Free Access
Issue
ESAIM: M2AN
Volume 37, Number 4, July-August 2003
Special issue on Biological and Biomedical Applications
Page(s) 631 - 647
DOI https://doi.org/10.1051/m2an:2003049
Published online 15 November 2003
  1. K.J. Bathe, Finite Element Procedures. Prentice Hall (1996). [Google Scholar]
  2. M. Bathe and R.D. Kamm, A fluid-structure interaction finite element analysis of pulsative blood flow through a compliant stenotic artery. J. Biomech. Engng. 121 (1999) 361-369. [CrossRef] [Google Scholar]
  3. P.N. Brown and Y. Saad, Convergence theory of nonlinear Newton-Krylov algorithms. SIAM J. Optim. 4 (1994) 297-330. [CrossRef] [MathSciNet] [Google Scholar]
  4. D. Chapelle and K.J. Bathe, The Finite Element Analysis of Shells - Fundamentals. Springer Verlag (2003). [Google Scholar]
  5. S. Deparis, M.A. Fernández, L. Formaggia and F. Nobile, Acceleration of a fixed point algorithm for fluid-structure interaction using transpiration conditions, in Second MIT Conference on Computational Fluid and Solid Mechanics, Elsevier (2003). [Google Scholar]
  6. J. Donéa, S. Giuliani and J.P. Halleux, An arbitrary Lagrangian-Eulerian finite element method for transient dynamic fluid-structure interactions. Comp. Meth. Appl. Mech. Engng. (1982) 689-723. [Google Scholar]
  7. M.A. Fernández and M. Moubachir, An exact block-newton algorithm for the solution of implicit time discretized coupled systems involved in fluid-structure interaction problems, in Second MIT Conference on Computational Fluid and Solid Mechanics, Elsevier (2003). [Google Scholar]
  8. L. Formaggia, J.-F. Gerbeau, F. Nobile and A. Quarteroni, On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Comp. Meth. Appl. Mech. Engrg. 191 (2001) 561-582. [CrossRef] [MathSciNet] [Google Scholar]
  9. J.-F. Gerbeau, A quasi-newton method for a fluid-structure problem arising in blood flows, in Second MIT Conference on Computational Fluid and Solid Mechanics, Elsevier (2003). [Google Scholar]
  10. P. Le Tallec, Numerical methods for nonlinear three-dimensional elasticity, in Handbook of numerical analysis, Vol. III, North-Holland (1994) 465-622. [Google Scholar]
  11. P. Le Tallec and J. Mouro, Fluid structure interaction with large structural displacements. Comput. Meth. Appl. Mech. Engrg. 190 (2001) 3039-3067. [CrossRef] [Google Scholar]
  12. X. Ma, G.C. Lee and S.G. Wu, Numerical simulation for the propagation of nonlinear pulsatile waves in arteries. Transactions of the ASME 114 (1992) 490-496. [Google Scholar]
  13. H.G. Matthies and J. Steindorf, Partitioned but strongly coupled iteration schemes for nonlinear fluid-structure interaction. preprint, 2000. [Google Scholar]
  14. H.G. Matthies and J. Steindorf, How to make weak coupling strong, in Computational Fluid and Solid Mechanics, K.J. Bathe Ed., Elsevier (2001) 1317-1319. [Google Scholar]
  15. D.P. Mok and W.A. Wall, Partitioned analysis schemes for the transient interaction of incompressible flows and nonlinear flexible structures, in Trends in computational structural mechanics CIMNE, K. Schweizerhof, W.A. Wall and K.U. Bletzinger Eds., Barcelona (2001). [Google Scholar]
  16. D.P. Mok, W.A. Wall and E. Ramm, Partitioned analysis approach for the transient, coupled response of viscous fluids and flexible structures, in Proceedings of the European Conference on Computational Mechanics. ECCM'99, W. Wunderlich Ed., TU Munich (1999). [Google Scholar]
  17. D.P. Mok, W.A. Wall and E. Ramm, Accelerated iterative substructuring schemes for instationary fluid-structure interaction, in Computational Fluid and Solid Mechanics, K.J. Bathe Ed., Elsevier (2001) 1325-1328. [Google Scholar]
  18. H. Morand and R. Ohayon, Interactions fluides-structures, Vol. 23 of Recherches en Mathématiques Appliquées. Masson, Paris (1992). [Google Scholar]
  19. J. Mouro, Interactions fluide structure en grands déplacements. Résolution numérique et application aux composants hydrauliques automobiles. Ph.D. thesis, École Polytechnique, France (1996). [Google Scholar]
  20. F. Nobile, Numerical approximation of fluid-structure interaction problems with application to haemodynamics. Ph.D. thesis, EPFL, Switzerland (2001). [Google Scholar]
  21. M.S. Olufsen, Modeling the Arterial System with Reference to an Anesthesia Simulator. Ph.D. thesis, Roskilde University (1998). [Google Scholar]
  22. K. Perktold and G. Rappitsch, Mathematical modeling of local arterial flow and vessel mechanics, in Computational Methods for Fluid-Structure interaction, J. Crolet and R. Ohayon Eds., Pitman (1994). [Google Scholar]
  23. K. Perktold and G. Rappitsch, Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. J. Biomech. 28 (1995) 845-856. [CrossRef] [PubMed] [Google Scholar]
  24. S. Piperno, Explicit/implicit fluid/structure staggered procedures with a structural predictor and fluid subcycling for 2D inviscid aeroelastic simulations. Int. J. Numer. Method Fluid 25 (1997) 1207-1226. [CrossRef] [Google Scholar]
  25. A. Quarteroni, M. Tuveri and A. Veneziani, Computational Vascular Fluid Dynamics: Problems, Models and Methods. Comp. Vis. Sci. 2 (2000) 163-197. [CrossRef] [Google Scholar]
  26. Alfio Quarteroni and Alberto Valli, Domain decomposition methods for partial differential equations. Numerical Mathematics and Scientific Computation. The Clarendon Press Oxford University Press, Oxford Science Publication (1999). [Google Scholar]
  27. K. Rhee and S.M. Lee, Effects of radial wall motion and flow waveform on the wall shear rate distribution in the divergent vascular graft. Ann. Biomed. Eng. (1998). [Google Scholar]
  28. S. Rugonyi and K.J. Bathe, On finite element analysis of fluid flows fully coupled with structural interactions. CMES 2 (2001). [Google Scholar]
  29. D. Tang, J. Yang, C. Yang and D.N. Ku, A nonlinear axisymmetric model with fluid-wall interactions for steady viscous flow in stenotic elastic tubes. J. Biomech. Engng. 121 (1999) 494-501. [CrossRef] [Google Scholar]
  30. S.A. Urquiza, M.J. Venere, F.M. Clara and R.A. Feijóo, Finite element (one-dimensional) haemodynamic model of the human arterial system, in ECCOMAS, Barcelona (2000). [Google Scholar]
  31. H. Zhang and K.J. Bathe, Direct and iterative computing of fluid flows fully coupled with structures, in Computational Fluid and Solid Mechanics, K.J. Bathe Ed., Elsevier (2001) 1440-1443. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you