Free Access
Volume 37, Number 4, July-August 2003
Special issue on Biological and Biomedical Applications
Page(s) 681 - 698
Published online 15 November 2003
  1. T. Arts, R.S. Reneman and P.C. Veenstra, A model of the mechanics of the left ventricle. Ann. Biomed. Engrg. 7 (1979) 299-318. [CrossRef] [Google Scholar]
  2. A. Bensoussan, J.L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam (1978). [Google Scholar]
  3. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Series in Computational Mathematics 15. Springer-Verlag, New York (1991). [Google Scholar]
  4. M. Briane, Three models of non periodic fibrous materials obtained by homogenization. ESAIM: M2AN 27 (1993) 759-775. [Google Scholar]
  5. H. Cai, Loi de comportement en grandes déformations du muscle à fibres actives. Application à la mécanique du cœur humain et à sa croissance. Thèse de l'Université de Savoie (1998). [Google Scholar]
  6. D. Caillerie and B. Cambou, Les techniques de changement d'échelles dans les milieux granulaires, in Micromécanique des milieux granulaires. Hermès Sciences, Paris (2001). [Google Scholar]
  7. R.S. Chadwick, Mechanics of the left ventricle. Biophys. J. 112 (1982) 333-339. [Google Scholar]
  8. D. Chapelle, F. Clément, F. Génot, P. Le Tallec, M. Sorine and J.M. Urquiza, A Physiologically-Based Model for the Active Cardiac Muscle Contraction, in Functional Imaging and Modeling of the Heart, Katila, Magnin, Clarysse, Montagnat and Nenonen Eds., LNCS 2230. Springer (2001) 128-133. [Google Scholar]
  9. P.G. Ciarlet, Mathematical Elasticity. Vol. 1: Three-Dimensional Elasticity. North-Holland, Amsterdam (1987). [Google Scholar]
  10. D. Cioranescu and J. Saint Jean Paulin, Homogenization of Reticulated Structures, Applied Mathematical Science 136. Springer-Verlag, New York (1999). [Google Scholar]
  11. Y.C. Fung, Biomechanics: Mechanical Properties of Living Tissues. 2nd ed., Springer-Verlag, New York (1993). [Google Scholar]
  12. M. Gurtin, An Introduction to Continuum Mechanics. Academic Press, San Diego (1981). [Google Scholar]
  13. P.S. Jouk, Y. Usson, G. Michalowicz and L. Grossi, Three-dimensional cartography of the pattern of the myofibres in the second trimester fetal human heart. Anat. Embryol. 202 (2000) 103-118. [CrossRef] [PubMed] [Google Scholar]
  14. J.D. Humphrey, R.K. Strumpf and F.C.P. Yin, Determination of a constitutive relation for passive myocardium: I. A new functional form. J. Biomech. Engrg. 112 (1990) 333-339. [CrossRef] [Google Scholar]
  15. J.D. Humphrey, R.K. Strumpf and F.C.P. Yin, Determination of a constitutive relation for passive myocardium: II. Parameter estimation. J. Biomech. Engrg. 112 (1990) 340-346. [CrossRef] [Google Scholar]
  16. D.H.S. Lin and F.C.P. Yin, A multiaxial constitutive law for mammalian left ventricular myocardium in steady-state barium contracture or tetanus. J. Biomech. Engrg. 120 (1998) 504-517. [Google Scholar]
  17. G. Moreau and D. Caillerie, Continuum modeling of lattice structures in large displacement. Applications to buckling analysis. Comput. & Structures 68 (1998) 181-189. [CrossRef] [Google Scholar]
  18. A. Mourad, L. Biard, D. Caillerie, P.-S. Jouk, A. Raoult, N. Szafran and Y. Usson, Geometrical modelling of the fibre organization in the human left ventricle, in Functional Imaging and Modeling of the Heart, Katila, Magnin, Clarysse, Montagnat, Nenonen Eds., LNCS 2230. Springer (2001) 32-38. [Google Scholar]
  19. M.P. Nash and P.J. Hunter, Computational mechanics of the heart. J. Elasticity 61 (2000) 113-141. [CrossRef] [MathSciNet] [Google Scholar]
  20. C.S. Peskin, Fiber architecture of the left ventricular wall: An asymptotic analysis. Comm. Pure Appl. Math. XLII (1989) 79-113. [Google Scholar]
  21. F. Pradel, Homogénéisation des milieux continus et discrets périodiques orientés. Thèse de l'École Nationale des Ponts et Chaussées (1998). [Google Scholar]
  22. E. Sanchez-Palencia, Non Homogeneous Media and Vibration Theory, Monographs in Physics 127. Springer-Verlag, Berlin (1980). [Google Scholar]
  23. D.D. Streeter, Gross morphology and fiber geometry of the heart, in Handbook of Physiology. The cardiovascular system, R.M. Berne, N. Sperelakis and S.R. Geiger Eds., Am. Phys. Soc. Williams & Wilkins, Baltimore (1979). [Google Scholar]
  24. L.A. Taber and R. Perucchio, Modeling heart development. J. Elasticity 61 (2000) 165-197. [CrossRef] [MathSciNet] [Google Scholar]
  25. H. Tollenaere and D. Caillerie, Continuous modeling of lattice structures by homogenization. Adv. Engrg. Software 29 (1998) 699-705. [CrossRef] [Google Scholar]
  26. C. Truesdell, A First Course in Rational Continuum Mechanics. Academic Press, New York (1977). [Google Scholar]
  27. T.P. Usyk, R. Mazhari and A.D. McCulloch, Effect of laminar orthotropic myofiber architecture on regional stress and strain in the canine left ventricle. J. Elasticity 61 (2000) 143-165. [CrossRef] [Google Scholar]
  28. K. Washizu, Variational Methods in Elasticity and Plasticity. 2nd ed., Pergamon Press (1975). [Google Scholar]
  29. F.C.P. Yin, R.K. Strumpf, P.H. Chew and S.L. Zeger, Quantification of the mechanical properties of noncontracting canine myocardium under simultaneous biaxial loading. J. Biomech. 20 (1987) 577-589. [CrossRef] [PubMed] [Google Scholar]
  30. M. Zile, M.K. Cowles, J.M. Buckley, K. Richardson, B.A. Cowles, C.F. Baicu, G. Cooper IV abd V. Gharpuray, Gel stretch method: a new method to measure constitutive properties of cardiac muscle cells. Am. J. Physiol. 274 (1998) H2188-2202. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you