Free Access
Issue
ESAIM: M2AN
Volume 37, Number 4, July-August 2003
Special issue on Biological and Biomedical Applications
Page(s) 663 - 679
DOI https://doi.org/10.1051/m2an:2003053
Published online 15 November 2003
  1. D.N. Arnold, F. Brezzi and M. Fortin, A stable finite element for the Stokes equations. Calcolo 21 (1984) 337-344. [Google Scholar]
  2. J.-D. Boissonnat and M. Yvinec, Algorithmic Geometry. Cambridge University Press, UK (1998). [Google Scholar]
  3. J.-D. Boissonat, R. Chaine, P. Frey, J.F. Gerbeau, G. Malandain, F. Nicoud, S. Salmon, E. Saltel and M. Thiriet, From medical images to computational blood flow models. INRIA Research Report (2003). [Google Scholar]
  4. V.D. Butty, K. Gudjonsson, P. Buchel, V.B. Makhijani, Y. Ventikos and D. Polikakos, Residence time and basins of attraction for a realistic right internal carotid artery with two aneurysms. Biorheology 39 (2002) 387-393. [PubMed] [Google Scholar]
  5. S. Chien, Shear dependence of effective cell volume as a determinant of blood viscosity. Science 168 (1970) 977-978. [CrossRef] [PubMed] [Google Scholar]
  6. S. Chien, Biophysical behavior in suspensions, in The Red Blod Cell, D. Surgenor Ed., Academic Press, New York (1975). [Google Scholar]
  7. P.G. Ciarlet, The finite element method for elliptic problems. Stud. Math. Appl. 4 (1978). [Google Scholar]
  8. G.G. Ferguson, Physical factors in the initiation, growth and rupture of human intracranial saccular aneurysms. J. Neurosurg. 37 (1972) 666-677. [CrossRef] [PubMed] [Google Scholar]
  9. P. Frey, A fully automatic adaptive isotropic surface remeshing procedure. INRIA Research Report 0252 (2001). [Google Scholar]
  10. J.-F. Gerbeau and M. Vidrascu, A Quasi-Newton Algorithm Based on a Reduced Model for Fluid-Structure Interaction Problems in Blood Flows. INRIA Research Report 4691 (2001). [Google Scholar]
  11. P.L. George, F. Hecht and E. Saltel, TetMesh (distributed by SIMULOG). [Google Scholar]
  12. R. Glowinski, Numerical methods for nonlinear variational problems. Springer Ser. Comput. Phys. (1984). [Google Scholar]
  13. F. Hecht and C. Parès, NSP1B3 : un logiciel pour résoudre les équations de Navier Stokes incompressible 3D. INRIA Research Report 1449 (1991). [Google Scholar]
  14. T.M. Liou and S.N. Liou, A review on in vitro studies of hemodynamic characteristics in terminal and lateral aneurysm models. Proc. Natl. Sci. Counc. ROC(B) 4 (1999) 133-148. [Google Scholar]
  15. W.E. Lorensen and H.E. Cline, Marching cubes: A high resolution 3D surface construction algorithm. Comput. Graphics 21 (1987) 163-169. [Google Scholar]
  16. J.-B. Mossa, Simulation d'une bifurcation artérielle. CERFACS Report (2001). [Google Scholar]
  17. K. Perktold, R. Peter and M. Resch, Pulsatile non-newtonian blood flow simulation through a bifurcation with an aneurysm. Biorheology 26 (1989) 1011-1030. [PubMed] [Google Scholar]
  18. O. Pironneau, On the transport-diffusion algorithm and its application to the Navier-Stokes equations. Numerische Mathematik 38 (1982) 309-332. [Google Scholar]
  19. H.J. Steiger, D.W. Liepsch, A. Poll and H.J. Reulen, Hemodynamic stress in terminal saccular aneurysms: a laser-Doppler study. Heart Vessels 4 (1988) 162-169. [CrossRef] [PubMed] [Google Scholar]
  20. D.A. Steinman, J.S. Milner, C.J. Norley, S.P. Lownie and D.W. Holdsworth, Image-based computational simulation of flow dynamics in a giant intracranial aneurysm. AJNR Am. J. Neuroradiol. 24 (2003) 559-566 [Google Scholar]
  21. G. Taubin, Curve and surface smoothing without shrinkage, in 5th Int. Conf. on Computer Vision Proc. (1995) 852-857. [Google Scholar]
  22. M. Thiriet, G. Martin-Borret and F. Hecht, Ecoulement rhéofluidifiant dans un coude et une bifurcation plane symétrique. Application à l'écoulement sanguin dans la grande circulation. J. Phys. III France 6 (1996) 529-542. [CrossRef] [EDP Sciences] [Google Scholar]
  23. M. Thiriet et al., Apports et limitations de la vélocimétrie par résonance magnétique nucléaire en biomécanique. Mesures dans un embranchement plan symétrique. J. Phys. III France 7 (1997) 771-787. [CrossRef] [EDP Sciences] [Google Scholar]
  24. M. Thiriet, P. Brugières, J. Bittoun and A. Gaston, Computational flow models in cerebral congenital aneurisms: I. Steady flow. Méca. Ind. 2 (2001) 107-118. [Google Scholar]
  25. M. Thiriet, S. Naili and C. Ribreau, Entry length and wall shear stress in uniformly collapsed-pipe flow. Comput. Model. Engrg. Sci. 4 (2003) No. 3 and 4. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you