Free Access
Issue
ESAIM: M2AN
Volume 37, Number 5, September-October 2003
Page(s) 851 - 868
DOI https://doi.org/10.1051/m2an:2003058
Published online 15 November 2003
  1. M. Balinski, A competitive (dual) simplex method for the assignment problem. Math. Program. 34 (1986) 125-141. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  2. F. Barthe, On a reverse form of the Brascamp-Lieb inequality. Invent. Math. 134 (1998) 335-361. [CrossRef] [MathSciNet]
  3. J.-D. Benamou, A domain decomposition method for the polar factorization of vector valued mappings. SIAM J. Numer. Anal. 32 (1995) 1808-1838. [CrossRef] [MathSciNet]
  4. J.D. Benamou and Y. Brenier, Numerical resolution on a massively parallel computer of a test problem in meteorology using a domain decomposition algorithm, in First European conference in computational fluid dynamics. North Holland (1992).
  5. J.D. Benamou and Y. Brenier, Weak existence for the semigeostrophic equations formulated as a coupled Monge-Ampère/transport problem. SIAM J. Appl. Math. 58 (1998) 1450-1461. [CrossRef] [MathSciNet]
  6. J.D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84 (2000) 375-393. [CrossRef] [MathSciNet]
  7. J.D. Benamou and Y. Brenier, Mixed L2/Wasserstein Optimal Mapping Between Prescribed Densities Functions (submitted).
  8. J.D. Benamou, Y. Brenier and K. Guittet, Numerical resolution of a multiphasic optimal mass transport problem. Tech. Report INRIA RR-4022.
  9. G. Boucjitte, G. Buttazzo and P. Seppechere, Shape Optimization Solutions via Monge-Kantorovich. C. R. Acad. Sci. Paris Sér. I 324 (1997) 1185-1191.
  10. Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44 (1991) 375-417. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed]
  11. Y. Brenier, Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations. Comm. Pure Appl. Math. 52 (1999) 411-452. [CrossRef] [MathSciNet]
  12. Y. Brenier, Extended Monge-Kantorovich theory. CIME 2001 lecture.
  13. L.A. Caffarelli, Boundary regularity of maps with convex potentials. Comm. Pure Appl. Math. 45 (1992) 1141-1151. [CrossRef] [MathSciNet]
  14. L.A. Caffarelli, Boundary regularity of maps with convex potentials. II. Ann. of Math. 144 (1996) 3, 453-496.
  15. M.J.P. Cullen, Solution to a model of a front forced by deformation. Q. J. R. Met. Soc. 109 (1983) 565-573. [CrossRef]
  16. M.J.P. Cullen, private communication.
  17. M.J.P. Cullen and R.J. Purser, An extended Lagrangian theory of semigeostrophic frontogenesis. J. Atmopheric Sci. 41 (1984) 1477-1497. [CrossRef]
  18. R.J. Douglas, Decomposition of weather forecast error using rearrangements of functions. (Preprint.)
  19. L.C. Evans, Partial differential equations and Monge-Kantorovich mass transfer. Lecture notes.
  20. M. Fortin and R. Glowinski, Augmented Lagrangian methods. Applications to the numerical solution of boundary value problems. North-Holland Publishing Co. Studies in Mathematics and its Applications 15 (1983) 340.
  21. U. Frisch et al., Back to the early Universe by optimal mass transportation. Nature 417 (2002) 260-262. [NASA ADS] [CrossRef] [PubMed]
  22. W. Gangbo and R.J. McCann, The geometry of optimal transportation. Acta Math. 177 (1996) 113-161. [CrossRef] [MathSciNet]
  23. W. Gangbo and R.J. McCann, Shape recognition via Wasserstein distance. Quart. Appl. Math. 58 (2000) 705-737. [CrossRef] [MathSciNet]
  24. K. Guittet, On the time-continuous mass transport problem and its approximation by augmented Lagrangian techniques. SIAM J. Numer. Anal. 41 (2003) 382-399. [CrossRef] [MathSciNet]
  25. K. Guittet, Ph.D. dissertation (2002).
  26. S. Haker, A. Tannenbaum and R. Kikinis, Mass preserving mapping and image registration. MICCAI (2001) 120-127.
  27. R. Jonker and A. Volgenant, A shortest augmenting path algorithm for dense and sparse linear assignment problem. Computing 38 (1987) 325-340. [CrossRef] [MathSciNet]
  28. R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29 (1998) 1-17. [CrossRef] [MathSciNet]
  29. T. Kaijser, Computing the Kantorovich distance for images. J. Math. Imaging Vision 9 (1998) 173-198. [CrossRef] [MathSciNet]
  30. L.V. Kantorovich, On the translocation of masses. C. R. (Doklady) Acad. Sci. URSS (N.S.) 37 (1942) 199-201. [MathSciNet]
  31. D. Kinderlehrer and N. Walkington, Approximation of Parabolic Equations based upon a Wasserstein metric. ESAIM: M2AN 33 (1999) 837-852. [CrossRef] [EDP Sciences]
  32. S.A. Kochengin and V.I. Oliker, Determination of reflector surfaces from near-field scattering data. Inverse Problems 13 (1997) 363-373. [CrossRef] [MathSciNet]
  33. R.J. McCann, Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal. 11 (2001) 589-608. [CrossRef] [MathSciNet]
  34. R. Menozzi, Utilisation de la distance de Wasserstein et application sismique. Rapport IUP Génie Mathématique et Informatique, Université Paris IX-Dauphine.
  35. G. Monge, Mémoire sur la théorie des déblais et des remblais. Mem. Acad. Sci. Paris (1781).
  36. F. Otto, The geometry of dissipative evolution equation: the porous medium equation. Comm. Partial Differential Equations 26 (2001) 101-174. [CrossRef] [MathSciNet]
  37. S.T. Rachev and L. Rüschendorf, Mass transportation problems, in Theory, Probability and its Applications, Vol. I. Springer-Verlag, New York (1998) 508.
  38. A. Shnirelman, Generalized fluid flows, their approximation and applications. Geom. Funct. Anal. 4 (1994) 586-620. [CrossRef] [MathSciNet]
  39. C. Villani, Topics in mass transport. Lecture notes (2000).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you