Free Access
Issue
ESAIM: M2AN
Volume 37, Number 5, September-October 2003
Page(s) 851 - 868
DOI https://doi.org/10.1051/m2an:2003058
Published online 15 November 2003
  1. M. Balinski, A competitive (dual) simplex method for the assignment problem. Math. Program. 34 (1986) 125-141. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  2. F. Barthe, On a reverse form of the Brascamp-Lieb inequality. Invent. Math. 134 (1998) 335-361. [CrossRef] [MathSciNet] [Google Scholar]
  3. J.-D. Benamou, A domain decomposition method for the polar factorization of vector valued mappings. SIAM J. Numer. Anal. 32 (1995) 1808-1838. [CrossRef] [MathSciNet] [Google Scholar]
  4. J.D. Benamou and Y. Brenier, Numerical resolution on a massively parallel computer of a test problem in meteorology using a domain decomposition algorithm, in First European conference in computational fluid dynamics. North Holland (1992). [Google Scholar]
  5. J.D. Benamou and Y. Brenier, Weak existence for the semigeostrophic equations formulated as a coupled Monge-Ampère/transport problem. SIAM J. Appl. Math. 58 (1998) 1450-1461. [CrossRef] [MathSciNet] [Google Scholar]
  6. J.D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84 (2000) 375-393. [CrossRef] [MathSciNet] [Google Scholar]
  7. J.D. Benamou and Y. Brenier, Mixed L2/Wasserstein Optimal Mapping Between Prescribed Densities Functions (submitted). [Google Scholar]
  8. J.D. Benamou, Y. Brenier and K. Guittet, Numerical resolution of a multiphasic optimal mass transport problem. Tech. Report INRIA RR-4022. [Google Scholar]
  9. G. Boucjitte, G. Buttazzo and P. Seppechere, Shape Optimization Solutions via Monge-Kantorovich. C. R. Acad. Sci. Paris Sér. I 324 (1997) 1185-1191. [Google Scholar]
  10. Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math. 44 (1991) 375-417. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  11. Y. Brenier, Minimal geodesics on groups of volume-preserving maps and generalized solutions of the Euler equations. Comm. Pure Appl. Math. 52 (1999) 411-452. [CrossRef] [MathSciNet] [Google Scholar]
  12. Y. Brenier, Extended Monge-Kantorovich theory. CIME 2001 lecture. [Google Scholar]
  13. L.A. Caffarelli, Boundary regularity of maps with convex potentials. Comm. Pure Appl. Math. 45 (1992) 1141-1151. [CrossRef] [MathSciNet] [Google Scholar]
  14. L.A. Caffarelli, Boundary regularity of maps with convex potentials. II. Ann. of Math. 144 (1996) 3, 453-496. [Google Scholar]
  15. M.J.P. Cullen, Solution to a model of a front forced by deformation. Q. J. R. Met. Soc. 109 (1983) 565-573. [CrossRef] [Google Scholar]
  16. M.J.P. Cullen, private communication. [Google Scholar]
  17. M.J.P. Cullen and R.J. Purser, An extended Lagrangian theory of semigeostrophic frontogenesis. J. Atmopheric Sci. 41 (1984) 1477-1497. [CrossRef] [Google Scholar]
  18. R.J. Douglas, Decomposition of weather forecast error using rearrangements of functions. (Preprint.) [Google Scholar]
  19. L.C. Evans, Partial differential equations and Monge-Kantorovich mass transfer. Lecture notes. [Google Scholar]
  20. M. Fortin and R. Glowinski, Augmented Lagrangian methods. Applications to the numerical solution of boundary value problems. North-Holland Publishing Co. Studies in Mathematics and its Applications 15 (1983) 340. [Google Scholar]
  21. U. Frisch et al., Back to the early Universe by optimal mass transportation. Nature 417 (2002) 260-262. [NASA ADS] [CrossRef] [PubMed] [Google Scholar]
  22. W. Gangbo and R.J. McCann, The geometry of optimal transportation. Acta Math. 177 (1996) 113-161. [CrossRef] [MathSciNet] [Google Scholar]
  23. W. Gangbo and R.J. McCann, Shape recognition via Wasserstein distance. Quart. Appl. Math. 58 (2000) 705-737. [CrossRef] [MathSciNet] [Google Scholar]
  24. K. Guittet, On the time-continuous mass transport problem and its approximation by augmented Lagrangian techniques. SIAM J. Numer. Anal. 41 (2003) 382-399. [CrossRef] [MathSciNet] [Google Scholar]
  25. K. Guittet, Ph.D. dissertation (2002). [Google Scholar]
  26. S. Haker, A. Tannenbaum and R. Kikinis, Mass preserving mapping and image registration. MICCAI (2001) 120-127. [Google Scholar]
  27. R. Jonker and A. Volgenant, A shortest augmenting path algorithm for dense and sparse linear assignment problem. Computing 38 (1987) 325-340. [CrossRef] [MathSciNet] [Google Scholar]
  28. R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29 (1998) 1-17. [CrossRef] [MathSciNet] [Google Scholar]
  29. T. Kaijser, Computing the Kantorovich distance for images. J. Math. Imaging Vision 9 (1998) 173-198. [CrossRef] [MathSciNet] [Google Scholar]
  30. L.V. Kantorovich, On the translocation of masses. C. R. (Doklady) Acad. Sci. URSS (N.S.) 37 (1942) 199-201. [MathSciNet] [Google Scholar]
  31. D. Kinderlehrer and N. Walkington, Approximation of Parabolic Equations based upon a Wasserstein metric. ESAIM: M2AN 33 (1999) 837-852. [CrossRef] [EDP Sciences] [Google Scholar]
  32. S.A. Kochengin and V.I. Oliker, Determination of reflector surfaces from near-field scattering data. Inverse Problems 13 (1997) 363-373. [CrossRef] [MathSciNet] [Google Scholar]
  33. R.J. McCann, Polar factorization of maps on Riemannian manifolds. Geom. Funct. Anal. 11 (2001) 589-608. [CrossRef] [MathSciNet] [Google Scholar]
  34. R. Menozzi, Utilisation de la distance de Wasserstein et application sismique. Rapport IUP Génie Mathématique et Informatique, Université Paris IX-Dauphine. [Google Scholar]
  35. G. Monge, Mémoire sur la théorie des déblais et des remblais. Mem. Acad. Sci. Paris (1781). [Google Scholar]
  36. F. Otto, The geometry of dissipative evolution equation: the porous medium equation. Comm. Partial Differential Equations 26 (2001) 101-174. [CrossRef] [MathSciNet] [Google Scholar]
  37. S.T. Rachev and L. Rüschendorf, Mass transportation problems, in Theory, Probability and its Applications, Vol. I. Springer-Verlag, New York (1998) 508. [Google Scholar]
  38. A. Shnirelman, Generalized fluid flows, their approximation and applications. Geom. Funct. Anal. 4 (1994) 586-620. [CrossRef] [MathSciNet] [Google Scholar]
  39. C. Villani, Topics in mass transport. Lecture notes (2000). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you