Free Access
Volume 37, Number 6, November-December 2003
Page(s) 991 - 1011
Published online 15 November 2003
  1. F. Ben Belgacem, A stabilized domain decomposition method with non-matching grids to the Stokes problem in three dimensions. SIAM. J. Numer. Anal. (to appear). [Google Scholar]
  2. F. Ben Belgacem and S.C. Brenner, Some nonstandard finite element estimates with applications to 3D Poisson and Signorini problems. Electron. Trans. Numer. Anal. 37 (2000) 1198–1216. [Google Scholar]
  3. F. Ben Belgacem and Y. Maday, The mortar element method for three dimensional elements. RAIRO Modél. Anal. Numér. 31 (1997) 289–302. [Google Scholar]
  4. C. Bernardi and F. Hecht, Error indicators for the mortar finite element discretization of the Laplace equation. Math. Comp. 71 (2002) 1339–1370. [MathSciNet] [Google Scholar]
  5. C. Bernardi and V. Girault, A local regularization operator for triangular and quadrilateral finite elements. SIAM. J. Numer. Anal. 35 (1998) 1893–1916 [Google Scholar]
  6. C. Bernardi and Y. Maday, Mesh adaptivity in finite elements by the mortar method. Rev. Européeenne Élém. Finis 9 (2000) 451–465. [Google Scholar]
  7. C. Bernardi, Y. Maday and A.T. Patera, A New Non Conforming Approach to Domain Decomposition: The Mortar Element Method. Collège de France Seminar, Pitman, H. Brezis, J.-L. Lions (1990). [Google Scholar]
  8. F. Brezzi, L.P. Franca, D. Marini and A. Russo, Stabilization techniques for domain decomposition with non-matching grids, Domain Decomposition Methods in Sciences and Engineering, P. Bjostrad, M. Espedal, D. Keyes Eds., Domain Decomposition Press, Bergen (1998) 1–11. [Google Scholar]
  9. P.G. Ciarlet, Basic error estimates for elliptic problems, in The Handbook of Numerical Analysis, Vol. II, P.G. Ciarlet, J.-L. Lions Eds., North-Holland (1991) 17–351. [Google Scholar]
  10. V. Girault and P.A. Raviart, Finite Element Methods for the Navier–Stokes Equations. Springer-Verlag (1986). [Google Scholar]
  11. P.A. Raviart and J.M. Thomas, Primal hybrid finite element method for 2nd order elliptic equations. Math. Comp. 31 (1977) 391–396. [MathSciNet] [Google Scholar]
  12. L.R. Scott and S. Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483–493. [Google Scholar]
  13. R. Verfürth, Error estimates for some quasi-interpolation operators. Modél. Math. Anal. Numér. 33 (1999) 695–713. [Google Scholar]
  14. R. Verfürth, A Review of A posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley & Teubner (1996). [Google Scholar]
  15. O.B. Widlund, An extention theorem for finite element spaces with three applications, in Numerical Techniques in Continuum Mechanics, Proceedings of the Second GAMM Seminar, W Hackbush, K. Witsch Eds., Kiel (1986). [Google Scholar]
  16. B. Wohlmuth, A residual based error estimator for mortar finite element discretization. Numer. Math. 84 (1999) 143–171. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you