Free Access
Volume 37, Number 6, November-December 2003
Page(s) 869 - 892
Published online 15 November 2003
  1. G. Bal and Y. Maday, Coupling of Transport and Diffusion Models in Linear Transport Theory. ESAIM: M2AN 36 (2002) 69–86. [CrossRef] [EDP Sciences] [Google Scholar]
  2. C. Bardos, R. Santos and R. Sentis, Diffusion approximation and computation of critical size. Trans. Amer. Math. Soc. 284 (1984) 617–649. [CrossRef] [MathSciNet] [Google Scholar]
  3. A. Bensoussan, J.-L. Lions and G.C. Papanicolaou, Boundary layers and homogenization of transport processes. Publ. Res. Inst. Math. Sci. 15 (1979) 53–157. [CrossRef] [MathSciNet] [Google Scholar]
  4. J.-F. Bourgat, P. Le Tallec, B. Perthame and Y. Qiu, Coupling Boltzmann and Euler equations without overlapping, in Domain decomposition methods in science and engineering (Como, 1992). Amer. Math. Soc., Providence, RI, Contemp. Math. 157 (1994) 377–398. [Google Scholar]
  5. C. Buet, S. Cordier, B. Lucquin-Desreux and S. Mancini, Diffusion limit of the Lorentz model: asymptotic preserving schemes. ESAIM: M2AN 36 (2002) 631–655. [CrossRef] [EDP Sciences] [Google Scholar]
  6. S. Chandrasekhar, Radiative Transfer. Dover, New York (1960). [Google Scholar]
  7. R. Dautray and J.L. Lions, Analyse Mathèmatique et Calcul Numérique pour les Sciences et les Techniques. Collection du Commissariat à l'Énergie Atomique: Série Scientifique, Masson, Paris (1985). [Google Scholar]
  8. P. Degond and C. Schmeiser, Kinetic boundary layers and fluid-kinetic coupling in semiconductors. Transport Theory Statist. Phys. 28 (1999) 31–55. [CrossRef] [MathSciNet] [Google Scholar]
  9. S. Dellacherie, Kinetic fluid coupling in the field of the atomic vapor laser isotopic separation: numerical results in the case of a mono-species perfect gas, presented at the 23rd International Symposium on Rarefied Gas Dynamics, Whistler (British Columbia), July (2002). [Google Scholar]
  10. F. Golse, Applications of the Boltzmann equation within the context of upper atmosphere vehicle aerodynamics. Comput. Methods Appl. Mech. Engrg. 75 (1989) 299-316. [CrossRef] [MathSciNet] [Google Scholar]
  11. F. Golse, Knudsen layers from a computational viewpoint. Transport Theory Statist. Phys. 21 (1992) 211–236. [CrossRef] [MathSciNet] [Google Scholar]
  12. F. Golse, S. Jin and C.D. Levermore, The convergence of numerical transfer schemes in diffusive regimes, I. The dicrete-ordinate method. SIAM J. Numer. Anal. 36 (1999) 1333–1369. [CrossRef] [MathSciNet] [Google Scholar]
  13. M. Günther, P. Le Tallec, J.-P. Perlat and J. Struckmeier, Numerical modeling of gas flows in the transition between rarefied and continuum regimes. Numerical flow simulation I, (Marseille, 1997). Vieweg, Braunschweig, Notes Numer. Fluid Mech. 66 (1998) 222–241. [Google Scholar]
  14. S. Jin and C.D. Levermore, The discrete-ordinate method in diffusive regimes. Transport Theory Statist. Phys. 20 (1991) 413–439. [Google Scholar]
  15. S. Jin and C.D. Levermore, Fully discrete numerical transfer in diffusive regimes. Transport Theory Statist. Phys. 22 (1993) 739–791. [Google Scholar]
  16. S. Jin, L. Pareschi and G. Toscani, Uniformly accurate diffusive relaxation schemes for multiscale transport equations. SIAM J. Numer. Anal. 38 (2000) 913-936. [CrossRef] [MathSciNet] [Google Scholar]
  17. A. Klar, Convergence of alternating domain decomposition schemes for kinetic and aerodynamic equations. Math. Methods Appl. Sci. 18 (1995) 649–670. [CrossRef] [MathSciNet] [Google Scholar]
  18. A. Klar, Asymptotic-induced domain decomposition methods for kinetic and drift-diffusion semiconductor equations. SIAM J. Sci. Comput. 19 (1998) 2032–2050. [CrossRef] [MathSciNet] [Google Scholar]
  19. A. Klar, An asymptotic-induced scheme for nonstationary transport equations in the diffusive limit. SIAM J. Numer. Anal. 35 (1998) 1073-1094. [CrossRef] [MathSciNet] [Google Scholar]
  20. A. Klar, H. Neunzert and J. Struckmeier, Transition from kinetic theory to macroscopic fluid equations: a problem for domain decomposition and a source for new algorithm. Transport Theory Statist. Phys. 29 (2000) 93–106. [CrossRef] [Google Scholar]
  21. A. Klar and N. Siedow, Boundary layers and domain decomposition for radiative heat transfer and diffusion equations: applications to glass manufacturing process. European J. Appl. Math. 9 (1998) 351–372. [CrossRef] [MathSciNet] [Google Scholar]
  22. E.W. Larsen, J.E. Morel and W.F. Miller, Jr., Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes. J. Comput. Phys. 69 (1987) 283–324. [CrossRef] [MathSciNet] [Google Scholar]
  23. J. Lehner and G.M. Wing, On the spectrum of an unsymmetric operator arising in the transport theory of neutrons. Comm. Pure Appl. Math. 8 (1955) 217–234. [Google Scholar]
  24. P. Le Tallec and F. Mallinger, Coupling Boltzmann and Navier-Stokes equations by half fluxes. J. Comput. Phys. 136 (1997) 51–67. [CrossRef] [MathSciNet] [Google Scholar]
  25. P. Le Tallec and M. Tidriri, Convergence analysis of domain decomposition algorithms with full overlapping for the advection-diffusion problems. Math. Comp. 68 (1999) 585–606. [CrossRef] [MathSciNet] [Google Scholar]
  26. M. Tidriri, New models for the solution of intermediate regimes in transport theory and radiative transfer: existence theory, positivity, asymptotic analysis, and approximations. J. Statist. Phys. 104 (2001) 291–325. [CrossRef] [MathSciNet] [Google Scholar]
  27. N. Wiener and E. Hopf, Über eine Klasse singulärer Integralgleichungen, Sitzber. Preuss. Akad. Wiss., Sitzung der phys.-math. Klasse, Berlin (1931) 696–706. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you