Free Access
Volume 37, Number 6, November-December 2003
Page(s) 893 - 908
Published online 15 November 2003
  1. N.A. Adams and S. Stolz, A subgrid-scale deconvolution approach for shock capturing. J. Comput. Phys. 178 (2002) 391–426 . [CrossRef] [MathSciNet] [Google Scholar]
  2. C. Basdevant, B. Legras, R. Sadourny and M. Béland, A study of barotropic model flows: intermittency, waves and predictability. J. Atmospheric Sci. 38 (1981) 2305–2326 . [CrossRef] [Google Scholar]
  3. H. Brezis, Analyse Fonctionnelle, Théorie et Applications. Masson, Paris (1983). [Google Scholar]
  4. L. Caffarelli, R. Kohn and L. Nirenberg, Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math. 35 (1982) 771–831 . [CrossRef] [MathSciNet] [Google Scholar]
  5. G.-Q. Chen, Q. Du and E. Tadmor, Spectral viscosity approximations to multidimensionnal scalar conservation laws. Math. Comp. 61 (1993) 629–643 . [CrossRef] [MathSciNet] [Google Scholar]
  6. S. Chen, C. Foias, D.D. Holm, E. Olson, E.S. Titi and S. Wynne, A connection between the Camassa-Holm equation and turbulent flows in channels and pipes. Phys. Fluids 11 (1999) 2343–2353 . [CrossRef] [MathSciNet] [Google Scholar]
  7. J.P. Chollet and M. Lesieur, Parametrization of small scales of three-dimensional isotropic turbulence utilizing spectral closures. J. Atmospheric Sci. 38 (1981) 2747–2757 . [Google Scholar]
  8. G.-H. Cottet, D. Jiroveanu and B. Michaux, Vorticity dynamics and turbulence models for Large-Eddy Simulations. ESAIM: M2AN 37 (2003) 187–207 . [CrossRef] [EDP Sciences] [Google Scholar]
  9. C.R. Doering and J.D. Gibbon, Applied analysis of the Navier–Stokes equations. Cambridge texts in applied mathematics, Cambridge University Press (1995). [Google Scholar]
  10. J. Duchon and R. Robert, Inertial energy dissipation for weak solutions of incompressible Euler and Navier-Stokes equations. Nonlinearity 13 (2000) 249–255 . [CrossRef] [MathSciNet] [Google Scholar]
  11. J.-L. Guermond, J.T. Oden and S. Prudhomme, Mathematical perspectives on the Large Eddy Simulation models for turbulent flows. J. Math. Fluid Mech. (2003). In press. [Google Scholar]
  12. S. Kaniel, On the initial value problem for an incompressible fluid with nonlinear viscosity. J. Math. Mech. 19 (1970) 681–706 . [MathSciNet] [Google Scholar]
  13. G.-S. Karamanos and G.E. Karniadakis, A spectral vanishing viscosity method for large-eddy simulations. J. Comput. Phys. 163 (2000) 22–50 . [CrossRef] [MathSciNet] [Google Scholar]
  14. N.K.-R. Kevlahan and M. Farge, Vorticity filaments in two-dimensional turbulence: creation, stability and effect. J. Fluid Mech. 346 (1997) 49–76 . [CrossRef] [MathSciNet] [Google Scholar]
  15. R.H. Kraichnan, Eddy viscosity in two and three dimensions. J. Atmospheric Sci. 33 (1976) 1521–1536 . [CrossRef] [Google Scholar]
  16. O.A. Ladyženskaja, Modification of the Navier–Stokes equations for large velocity gradients, in Seminars in Mathematics V.A. Stheklov Mathematical Institute, Vol. 7, Boundary value problems of mathematical physics and related aspects of function theory, Part II, O.A. Ladyženskaja Ed., New York, London (1970). Consultant Bureau. [Google Scholar]
  17. O.A. Ladyženskaja, New equations for the description of motion of viscous incompressible fluds and solvability in the large of boundary value problems for them, in Proc. of the Stheklov Institute of Mathematics, number 102 (1967), Boundary value problems of mathematical physics, O.A. Ladyženskaja Ed., V, Providence, Rhode Island (1970). AMS. [Google Scholar]
  18. E. Lamballais, O. Métais and M. Lesieur, Spectral-dynamic model for large-eddy simulations of turbulent rotating channel flow. Theoret. Comput. Fluid Dynamics 12 (1998) 149–177 . [CrossRef] [Google Scholar]
  19. A. Leonard, Energy cascade in Large-Eddy simulations of turbulent fluid flows. Adv. Geophys. 18 (1974) 237–248 . [CrossRef] [Google Scholar]
  20. J. Leray, Essai sur le mouvement d'un fluide visqueux emplissant l'espace. Acta Math. 63 (1934) 193–248 . [Google Scholar]
  21. M. Lesieur and R. Roggalo, Large-eddy simulations of passive scalar diffusion in isotropic turbulence. Phys. Fluids A 1 (1989) 718–722 . [Google Scholar]
  22. J.-L. Lions, Quelques résultats d'existence dans des équations aux dérivées partielles non linéaires. Bull. Soc. Math. France 87 (1959) 245–273 . [CrossRef] [MathSciNet] [Google Scholar]
  23. J.-L. Lions, Sur certaines équations paraboliques non linéaires. Bull. Soc. Math. France 93 (1965) 155–175 . [MathSciNet] [Google Scholar]
  24. J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Vol 1. Dunod, Paris (1969). [Google Scholar]
  25. Y. Maday, M. Ould Kaber and E. Tadmor, Legendre pseudospectral viscosity method for nonlinear conservation laws. SIAM J. Numer. Anal. 30 (1993) 321–342 . [CrossRef] [MathSciNet] [Google Scholar]
  26. D. McComb and A. Young, Explicit-scales projections of the partitioned non-linear term in direct numerical simulation of the Navier–Stokes equation, in Second Monte Verita Colloquium on Fundamental Problematic Issues in Fluid Turbulence, Ascona, March 23–27 (1998). Available on the Internet at [Google Scholar]
  27. V. Scheffer, Hausdorff measure and the Navier–Stokes equations. Comm. Math. Phys. 55 (1977) 97–112 . [CrossRef] [MathSciNet] [Google Scholar]
  28. V. Scheffer, Nearly one-dimensional singularities of solutions to the Navier-Stokes inequality. Comm. Math. Phys. 110 (1987) 525–551 . [CrossRef] [MathSciNet] [Google Scholar]
  29. J. Smagorinsky, General circulation experiments with the primitive equations, part i: the basic experiment. Monthly Wea. Rev. 91 (1963) 99–152 . [Google Scholar]
  30. E. Tadmor, Convergence of spectral methods for nonlinear conservation laws. SIAM J. Numer. Anal. 26 (1989) 30–44 . [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you