Free Access
Issue |
ESAIM: M2AN
Volume 38, Number 1, January-February 2004
|
|
---|---|---|
Page(s) | 177 - 201 | |
DOI | https://doi.org/10.1051/m2an:2004009 | |
Published online | 15 February 2004 |
- D.A. Adams, Sobolev spaces. Academic Press, New York (1975). [Google Scholar]
- L. Baillet and T. Sassi, Méthode d'éléments finis avec hybridisation frontière pour les problèmes de contact avec frottement. C.R. Acad. Sciences Paris Série I 334 (2002) 917–922. [Google Scholar]
- F. Ben Belgacem, Y. Renard and L. Slimane, A mixed formulation for the Signorini problem in incompressible elasticity, theory and finite element approximation. Appl. Numer. Math. (to appear). [Google Scholar]
- H. Brezis, Analyse fonctionnelle : Théorie et applications. Masson, Paris (1983). [Google Scholar]
- F. Brezzi and M. Fortin, Mixed and hybrid finite element methods. Springer-Verlag, Berlin (1991). [Google Scholar]
- F. Brezzi, W. Hager and P.A. Raviart, Error estimates for the finite element solution of variational inequalities, Part II. Numer. Math 31 (1978) 1–16. [Google Scholar]
- D. Capatina-Papaghiuc, Contribution à la prévention de phénomènes de verrouillage numérique. Ph.D. thesis, Université de Pau, France (1997). [Google Scholar]
- D. Capatina-Papaghiuc and N. Raynaud, Numerical approximation of stiff transmission problems by mixed finite element methods. RAIRO Modél. Math. Anal. Numér. 32 (1998) 611–629. [MathSciNet] [Google Scholar]
- P.G. Ciarlet, The finite element methods for elliptic problems. North-Holland, Amsterdam (1978). [Google Scholar]
- P. Coorevits, P. Hild, K. Lhalouani and T. Sassi, Mixed finite elemen methods for unilateral problems: convergence analysis and numerical studies. Math. Comp. 71 (2001) 1–25. [Google Scholar]
- G. Duvaut and J.-L. Lions, Les inéquations en mécanique et en physique. Dunod, Paris (1972). [Google Scholar]
- I. Ekeland and R. Temam, Analyse convexe et problèmes variationnels. Dunod, Paris (1974). [Google Scholar]
- R.C. Falk, Error estimates for the approximation of a class of variational inequalities. Math. Comp. 28 (1974) 863–971. [Google Scholar]
- J. Haslinger, Mixed formulation of elliptic variational inequalities and its approximation. Appl. Math. 6 (1981) 462–475. [Google Scholar]
- J. Haslinger, I. Hlaváček and J. Nečas, Numerical methods for unilateral problems in solid mechanics. Handb. Numer. Anal., Vol. IV: Finite Element Methods, Part 2 – Numerical Methods for solids, Part 2, P.G. Ciarlet and J.-L. Lions Eds., North-Holland, Amsterdam (1996). [Google Scholar]
- J. Jarušek, Contact problems with bounded friction, coercive case. Czech. Math. J. 33 (1983) 237–261. [Google Scholar]
- N. Kikuchi and J.T. Oden, Contact problems in elasticity: A Study of variational Inequalities and Finite Element Methods. SIAM, Philadelphia (1988). [Google Scholar]
- K. Lhalouani and T. Sassi, Nonconforming mixed variational formulation and domain decomposition for unilateral problems. East-West J. Num. Math. 7 (1999) 23–30. [Google Scholar]
- J.-L. Lions, Quelques méthodes de résolution de problème aux limites non linéaires. Dunod, Paris (1969). [Google Scholar]
- U. Mosco, Convergence of convex sets and of solutions of variational inequalities. Adv. Math. 3 (1969) 510–585. [CrossRef] [Google Scholar]
- M. Moussaoui and K. Khodja, Régularité des solutions d'un problème mêlé Dirichlet-Signorini dans un domaine polygonal plan. Comm. Partial Differential Equations 17 (1992) 805–826. [Google Scholar]
- N. Raynaud, Approximation par méthode d'éléments finis de problèmes de transmission raides. Ph.D. thesis, Université de Pau, France (1994). [Google Scholar]
- J.E. Robert and J.-M. Thomas, Mixed and Hybrid Methods. Handb. Numer. Anal., Vol. II: Finite Element Methods, Part 1, North-Holland, Amesterdam (1991). [Google Scholar]
- L. Slimane, Méthodes mixtes et traitement du verrouillage numérique pour la résolution des inéquations variationnelles. Ph.D. thesis, INSA de Toulouse, France (2001). [Google Scholar]
- L. Slimane, A. Bendali and P. Laborde, Mixed formulations for a class of variational inequalities. C.R. Math. Acad. Sci. Paris 334 (2002) 87–92. [Google Scholar]
- L. Wang and G. Wang, Dual mixed finite element method for contact problem in elasticity. Math. Num. Sin. 21 (1999). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.