Free Access
Issue
ESAIM: M2AN
Volume 38, Number 1, January-February 2004
Page(s) 93 - 127
DOI https://doi.org/10.1051/m2an:2004005
Published online 15 February 2004
  1. H. Amann, Linear and Quasilinear Parabolic Problems 1: Abstract Linear Theory. Birkhäuser, Basel (1995). [Google Scholar]
  2. H.-J. Bungartz and M. Griebel, A note on the complexity of solving Poisson's equation for spaces of bounded mixed derivatives. J. Complexity 15 (1999) 167–199. [CrossRef] [MathSciNet] [Google Scholar]
  3. S.C. Eisenstat, H.C. Elman and M.H. Schultz, Variational iterative methods for nonsymmetric systems of linear equations. SIAM J. Numer. Anal. 20 (1983) 345–357. [CrossRef] [MathSciNet] [Google Scholar]
  4. M. Griebel and S. Knapek, Optimized tensor product approximation spaces. Constr. Approx. 16 (2000) 525–540. [CrossRef] [MathSciNet] [Google Scholar]
  5. M. Griebel, P. Oswald and T. Schiekofer, Sparse grids for boundary integral equations. Numer. Math. 83 (1999) 279–312. [CrossRef] [MathSciNet] [Google Scholar]
  6. J.L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications I. Springer-Verlag (1972). [Google Scholar]
  7. P. Oswald, On best N-term approximation by Haar functions in Hs-norms, in Metric Function Theory and Related Topics in Analysis. S.M. Nikolskij, B.S. Kashin, A.D. Izaak Eds., AFC, Moscow (1999) 137–163 (in Russian). [Google Scholar]
  8. H.C. Öttinger, Stochastic Processes in polymeric fluids. Springer-Verlag (1998). [Google Scholar]
  9. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Appl. Math. Sci., Springer-Verlag, New York 44 (1983). [Google Scholar]
  10. G. Schmidlin, C. Lage and C. Schwab, Rapid solution of first kind boundary integral equations in Formula . Eng. Anal. Bound. Elem. 27 (2003) 469–490. [CrossRef] [Google Scholar]
  11. D. Schötzau, hp-DGFEM for Parabolic Evolution Problems. Dissertation ETH Zurich (1999). [Google Scholar]
  12. D. Schötzau and C. Schwab, Time discretization of parabolic problems by the hp-version of the discontinuous Galerkin finite element method. SIAM J. Numer. Analysis 38 (2000) 837–875. [CrossRef] [MathSciNet] [Google Scholar]
  13. D. Schötzau and C. Schwab, hp-Discontinuous Galerkin time-stepping for parabolic problems. C.R. Acad. Sci. Paris 333 (2001) 1121–1126. [Google Scholar]
  14. C. Schwab, p and hp Finite Element Methods. Oxford University Press (1998). [Google Scholar]
  15. C. Schwab and R.A. Todor, Sparse finite elements for stochastic elliptic problems-higher order moments (in press in Computing 2003), http://www.math.ethz.ch/research/groups/sam/reports/2003 [Google Scholar]
  16. V. Thomee, Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag (1997). [Google Scholar]
  17. T. von Petersdorff and C. Schwab, Wavelet-discretizations of parabolic integro-differential equations. SIAM J. Numer. Anal. 41 (2003) 159–180. [CrossRef] [MathSciNet] [Google Scholar]
  18. T. Werder, D. Schötzau, K. Gerdes and C. Schwab, hp-Discontinuous Galerkin time-stepping for parabolic problems. Comput. Methods Appl. Mech. Eng. 190 (2001) 6685–6708. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you