Free Access
Volume 38, Number 2, March-April 2004
Page(s) 249 - 260
Published online 15 March 2004
  1. R.A. Adams, Sobolev spaces. Academic Press (1975). [Google Scholar]
  2. H. Borouchaki, P.L. George, F. Hecht, P. Laug and E. Saltel, Delaunay mesh generation governed by metric specifications. Part I: Algorithms. Finite Elem. Anal. Des. 25 (1997) 61–83. [CrossRef] [MathSciNet] [Google Scholar]
  3. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer Verlag (1991). [Google Scholar]
  4. F. Brezzi, M. Fortin and R. Stenberg, Error analysis of mixed-interpolated elements for Reissner-Mindlin plates. Research Repport No. 780, Instituto di Analisi Numerica, Pavie (1991). [Google Scholar]
  5. A. Fortin, D. Côté and P.A. Tanguy, On the imposition of friction boundary conditions for the numerical simulation of Bingham fluid flows. Comput. Meth. Appl. Mech. Engrg. 88 (1991) 97–109. [CrossRef] [Google Scholar]
  6. M. Fortin and R. Glowinski, Méthodes de lagrangien augmenté. Applications à la résolution numérique de problèmes aux limites. Méthodes Mathématiques de l'Informatique, Dunod (1982). [Google Scholar]
  7. R. Glowinski, J.L. Lions and R. Trémolières, Numerical analysis of variational inequalities. North Holland, Amsterdam (1981). [Google Scholar]
  8. J. Haslinger, I. Hlavàček and J. Nečas, Numerical methods for unilateral problems in solidmechanics. P.G. Ciarlet and J.L. Lions Eds., Handb. Numer. Anal. IV (1996). [Google Scholar]
  9. F. Hecht, Bidimensional anisotropic mesh generator. INRIA (1997). [Google Scholar]
  10. I.R. Ionescu and B. Vernescu, A numerical method for a viscoplastic problem. An application to the wire drawing. Int. J. Engrg. Sci. 26 (1988) 627–633. [CrossRef] [Google Scholar]
  11. N. Kikuchi and J.T. Oden, Contact problems in elasticity: A study of variational inequalities and finite element methods. SIAM Stud. Appl. Math. (1988). [Google Scholar]
  12. N. Roquet and P. Saramito, An adaptive finite element method for Bingham fluid flows around a cylinder. Comput. Methods Appl. Mech. Engrg. 192 (2003) 3317–3341. [CrossRef] [MathSciNet] [Google Scholar]
  13. N. Roquet, R. Michel and P. Saramito, Errors estimate for a viscoplastic fluid by using Pk finite elements and adaptive meshes. C. R. Acad. Sci. Paris, Série I 331 (2000) 563–568. [Google Scholar]
  14. P. Saramito and N. Roquet, An adaptive finite element method for viscoplastic fluid flows in pipes. Comput. Methods Appl. Mech. Engrg. 190 (2001) 5391–5412. [CrossRef] [Google Scholar]
  15. P. Saramito and N. Roquet, Rheolef home page. (2002). [Google Scholar]
  16. P. Saramito and N. Roquet, Rheolef users manual. Technical report, LMC-IMAG (2002). [Google Scholar]
  17. M.G. Vallet, Génération de maillages anisotropes adaptés. Application à la capture de couches limites. Rapport de Recherche No. 1360, INRIA (1990). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you