Free Access
Issue
ESAIM: M2AN
Volume 38, Number 2, March-April 2004
Page(s) 261 - 289
DOI https://doi.org/10.1051/m2an:2004013
Published online 15 March 2004
  1. G. Akrivis and M. Crouzeix, Linearly implicit methods for nonlinear parabolic equations. Math. Comp. 73 (2004) 613–635. [CrossRef] [MathSciNet] [Google Scholar]
  2. G. Akrivis and C. Makridakis, Convergence of a time discrete Galerkin method for semilinear parabolic equations. Preprint (2002). [Google Scholar]
  3. G. Akrivis, M. Crouzeix and C. Makridakis, Implicit-explicit multistep finite element methods for nonlinear parabolic problems. Math. Comp. 67 (1998) 457–477. [Google Scholar]
  4. G. Akrivis, M. Crouzeix and C. Makridakis, Implicit-explicit multistep methods for quasilinear parabolic equations. Numer. Math. 82 (1999) 521–541. [Google Scholar]
  5. A.K. Aziz and P. Monk, Continuous finite elements in space and time for the heat equation. Math. Comp. 52 (1989) 255–274. [Google Scholar]
  6. J.H. Bramble and P.H. Sammon, Efficient higher order single step methods for parabolic problems: Part I, Math. Comp. 35 (1980) 655–677. [Google Scholar]
  7. G.A. Baker and J. H. Bramble, Semidiscrete and single step fully discrete approximations for second order hyperbolic equations. RAIRO Anal. Numér. 13 (1979) 75–100. [Google Scholar]
  8. K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. I. A linear model problem. SIAM J. Numer. Anal. 28 (1991) 43–77. [Google Scholar]
  9. K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. IV. Nonlinear problems. SIAM J. Numer. Anal. 32 (1995) 1729–1749. [Google Scholar]
  10. K. Eriksson, C. Johnson and S. Larsson, Adaptive finite element methods for parabolic problems. VI. Analytic semigroups. SIAM J. Numer. Anal. 35 (1998) 1315–1325. [Google Scholar]
  11. D. Estep and S. Larsson, The discontinuous Galerkin method for semilinear parabolic problems. RAIRO Modél. Math. Anal. Numér. 27 (1993) 35–54. [Google Scholar]
  12. P. Jamet, Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain. SIAM J. Numer. Anal. 15 (1978) 912–928. [Google Scholar]
  13. C. Johnson, Discontinuous Galerkin finite element methods for second order hyperbolic problems. Comput. Methods Appl. Mech. Engrg. 107 (1993) 117–129. [Google Scholar]
  14. C. Johnson, Y.-Y. Nie and V. Thomée, An a posteriori error estimate and adaptive timestep control for a backward Euler discretization of a parabolic problem. SIAM J. Numer. Anal. 27 (1990) 277–291. [Google Scholar]
  15. C. Johnson and A. Szepessy, Adaptive finite element methods for conservation laws based on a posteriori error estimates. Comm. Pure Appl. Math. 48 (1995) 199–234. [Google Scholar]
  16. O. Karakashian and C. Makridakis, A space-time finite element method for the nonlinear Schrödinger equation: the discontinuous Galerkin method. Math. Comp. 67 (1998) 479–499. [Google Scholar]
  17. O. Karakashian and C. Makridakis, A space-time finite element method for the nonlinear Schrödinger equation: the continuous Galerkin method, SIAM J. Numer. Anal. 36 (1999) 1779–1807. [Google Scholar]
  18. O. Karakashian and C. Makridakis, Convergence of a continuous Galerkin method with mesh modification for nonlinear wave equations. Math. Comp. (to appear). [Google Scholar]
  19. C. Makridakis and I. Babuška, On the stability of the discontinuous Galerkin method for the heat equation. SIAM J. Numer. Anal. 34 (1997) 389–401. [Google Scholar]
  20. C. Makridakis and R.H. Nochetto, A posteriori error estimates for a class of dissipative schemes for nonlinear evolution equations. Preprint (2002). [Google Scholar]
  21. R.H. Nochetto, A. Schmidt and C. Verdi, A posteriori error estimation and adaptivity for degenerate parabolic problems. Math. Comp. 69 (2000) 1–24. [Google Scholar]
  22. R.H. Nochetto, G. Savaré and C. Verdi, A posteriori error estimates for variable time-step discretizations of nonlinear evolution equations. Comm. Pure Appl. Math. 53 (2000) 525–589. [Google Scholar]
  23. A.H. Schatz and L.B. Wahlbin, Interior maximum-norm estimates for finite element methods: Part II. Math. Comp. 64 (1995) 907–928. [Google Scholar]
  24. V. Thomée, Galerkin Finite Element Methods for Parabolic Problems. Springer-Verlag, Berlin (1997). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you