Free Access
Issue |
ESAIM: M2AN
Volume 38, Number 3, May-June 2004
|
|
---|---|---|
Page(s) | 437 - 455 | |
DOI | https://doi.org/10.1051/m2an:2004021 | |
Published online | 15 June 2004 |
- A. Bergam, C. Bernardi and Z. Mghazli, A posteriori analysis of the finite element discretization of some parabolic equations. Math. Comput. (to appear). [Google Scholar]
- C. Bernardi and B. Métivet, Indicateurs d'erreur pour l'équation de la chaleur. Rev. Européenne Élém. Finis 9 (2000) 425–438. [Google Scholar]
- C. Bernardi, B. Métivet and R. Verfürth, Analyse numérique d'indicateurs d'erreur, in Maillage et adaptation. P.-L. George Ed., Hermès (2001) 251–278. [Google Scholar]
- M. Bieterman and I. Babuška, The finite element method for parabolic equations. I. A posteriori error estimation. Numer. Math. 40 (1982) 339–371. [CrossRef] [MathSciNet] [Google Scholar]
- M. Bieterman and I. Babuška, The finite element method for parabolic equations. II. A posteriori error estimation and adaptive approach. Numer. Math. 40 (1982) 373–406. [CrossRef] [MathSciNet] [Google Scholar]
- P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 9 (1975) 77–84. [Google Scholar]
- K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. I. A linear model problem. SIAM J. Numer. Anal. 28 (1991) 43–77. [CrossRef] [MathSciNet] [Google Scholar]
- K. Eriksson and C. Johnson, Adaptive finite element methods for parabolic problems. IV. Nonlinear problems. SIAM J. Numer. Anal. 32 (1995) 1729–1749. [CrossRef] [MathSciNet] [Google Scholar]
- V. Girault and P.-A. Raviart, Finite Element Approximation of the Navier–Stokes Equations. Springer-Verlag, Lect. Notes Math. 749 (1979). [Google Scholar]
- J.G. Heywood and R. Rannacher, Finite-element approximation of the nonstationary Navier–Stokes problem. Part IV: Error analysis for second-order time discretization. SIAM J. Numer. Anal. 27 (1990) 353–384. [CrossRef] [MathSciNet] [Google Scholar]
- C. Johnson, Y.-Y. Nie and V. Thomée, An a posteriori error estimate and adaptive timestep control for a backward Euler discretization of a parabolic problem. SIAM J. Numer. Anal. 27 (1990) 277–291. [CrossRef] [MathSciNet] [Google Scholar]
- M. Picasso, Adaptive finite elements for a linear parabolic problem. Comput. Methods Appl. Mech. Engrg. 167 (1998) 223–237. [Google Scholar]
- J. Pousin and J. Rappaz, Consistency, stability, a priori and a posteriori errors for Petrov–Galerkin methods applied to nonlinear problems. Numer. Math. 69 (1994) 213–231. [CrossRef] [MathSciNet] [Google Scholar]
- R. Temam, Theory and Numerical Analysis of the Navier–Stokes Equations. North-Holland (1977). [Google Scholar]
- R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley & Teubner (1996). [Google Scholar]
-
R. Verfürth, A posteriori error estimates for nonlinear problems:
–error estimates for finite element discretizations of parabolic equations. Numer. Methods Partial Differential Equations 14 (1998) 487–518. [CrossRef] [MathSciNet] [Google Scholar]
-
R. Verfürth, A posteriori error estimates for nonlinear problems.
–error estimates for finite element discretizations of parabolic equations. Math. Comp. 67 (1998) 1335–1360. [CrossRef] [MathSciNet] [Google Scholar]
- R. Verfürth, Error estimates for some quasi-interpolation operators. ESAIM: M2AN 33 (1999) 695–713. [CrossRef] [EDP Sciences] [Google Scholar]
- R. Verfürth, A posteriori error estimation techniques for non-linear elliptic and parabolic pdes, Rev. Européenne Élém. Finis 9 (2000) 377–402. [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.