Free Access
Issue |
ESAIM: M2AN
Volume 38, Number 3, May-June 2004
|
|
---|---|---|
Page(s) | 563 - 578 | |
DOI | https://doi.org/10.1051/m2an:2004026 | |
Published online | 15 June 2004 |
- R.A. Adams, Sobolev Spaces. Academic Press (1975). [Google Scholar]
- G. Amontons, Sur l'origine de la résistance dans les machines. Mémoires de l'Académie Royale (1699) 206–222. [Google Scholar]
- L. Baillet and T. Sassi, Méthodes d'éléments finis avec hybridisation frontière pour les problèmes de contact avec frottement. C.R. Acad. Sci. Paris, Ser. I 334 (2002) 917–922. [Google Scholar]
- G. Bayada, M. Chambat, K. Lhalouani and T. Sassi, Éléments finis avec joints pour des problèmes de contact avec frottement de Coulomb non local. C.R. Acad. Sci. Paris, Ser. I 325 (1997) 1323–1328. [Google Scholar]
- P.-G. Ciarlet, The finite element method for elliptic problems, Handbook of Numerical Analysis, P.G. Ciarlet and J.L. Lions Eds., Vol. 2, Part 1, North-Holland (1991) 17–352. [Google Scholar]
- C.A. Coulomb, Théorie des machines simples. Mémoire de Mathématique et de Physique de l'Académie Royale 10 (1785) 145–173. [Google Scholar]
- Z. Dostál, Box constrained quadratic programming with proportioning and projections. SIAM J. Opt. 7 (1997) 871–887. [CrossRef] [MathSciNet] [Google Scholar]
- G. Duvaut and J.-L. Lions, Les inéquations en mécanique et en physique. Dunod, Paris (1972). [Google Scholar]
- I. Ekeland and R. Temam, Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976). [Google Scholar]
- R. Glowinski, Numerical methods for nonlinear variational problems. Springer, New York (1984). [Google Scholar]
- P. Grisvard, Elliptic Problems in Nonsmooth Domains. Monogr. Studies Math., Pitman 24 (1985). [Google Scholar]
- J. Haslinger and I. Hlaváček, Approximation of the Signorini problem with friction by mixed finite element method, J. Math. Anal. Appl. 86 (1982) 99–122. [Google Scholar]
- J. Haslinger and P.D. Panagiolopoulas, Approximation of contact problems with friction by reciprocal variational formulations. Proc. Roy. Soc. Edinburgh 98A (1984) 365–383. [Google Scholar]
- J. Haslinger, I. Hlaváček and J. Nečas, Numerical methods for unilateral problems in solid mechanics, Handbook of Numerical Analysis, P.G. Ciarlet and J.L. Lions Eds., Vol. 4, Part 2, North-Holland (1996) 313–485. [Google Scholar]
- J. Haslinger, R. Kučera and Z. Dostál, An algorithm for numerical realization of 3D contact problems with Coulomb friction. J. Comput. Appl. Math. 164-165 (2004) 387–408. [CrossRef] [Google Scholar]
- P. Hild, À propos d'approximation par éléments finis optimale pour les problèmes de contact unilatéral. C.R. Acad. Sci. Paris, Ser. I 326 (1998) 1233–1236. [Google Scholar]
- N. Kikuchi and J.T. Oden, Contact problems in elasticity: a study of variational inequalities and finite element methods. SIAM, Philadelphia (1988). [Google Scholar]
- D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications. Academic Press (1980). [Google Scholar]
- K. Lhalouani and T. Sassi, Nonconforming mixed variational formulation and domain decomposition for unilateral problems. East-West J. Numer. Math. 7 (1999) 23–30. [MathSciNet] [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.