Free Access
Volume 38, Number 4, July-August 2004
Page(s) 633 - 652
Published online 15 August 2004
  1. J.W. Barrett and C.M. Elliott, A finite element method on a fixed mesh for the Stefan problem with convection in a saturated porous medium, in Numerical Methods for Fluid Dynamics, K.W. Morton and M.J. Baines Eds., Academic Press (London) (1982) 389–409. [Google Scholar]
  2. J.W. Barrett and R. Nürnberg, Convergence of a finite element approximation of surfactant spreading on a thin film in the presence of van der Waals forces. IMA J. Numer. Anal. 24 (2004) 323–363. [CrossRef] [MathSciNet] [Google Scholar]
  3. C.M. Elliott, On the finite element approximation of an elliptic variational inequality arising from an implicit time discretization of the Stefan problem. IMA J. Numer. Anal. 1 (1981) 115–125. [Google Scholar]
  4. C.M. Elliott, Error analysis of the enthalpy method for the Stefan problem. IMA J. Numer. Anal. 7 (1987) 61–71. [CrossRef] [MathSciNet] [Google Scholar]
  5. C.M. Elliott and S. Larsson, A finite element model for the time-dependent Joule heating problem. Math. Comp. 64 (1995) 1433–1453. [CrossRef] [MathSciNet] [Google Scholar]
  6. R.F. Gariepy, M. Shillor and X. Xu, Existence of generalized weak solutions to a model for in situ vitrification. European J. Appl. Math. 9 (1998) 543–559. [CrossRef] [MathSciNet] [Google Scholar]
  7. S.S. Koegler and C.H. Kindle, Modeling of the in situ vitrification process. Amer. Ceram. Soc. Bull. 70 (1991) 832–835. [Google Scholar]
  8. J. Simon, Compact sets in the space Lp(0,T;B). Ann. Math. Pura. Appl. 146 (1987) 65–96. [Google Scholar]
  9. X. Xu, A compactness theorem and its application to a system of partial differential equations. Differential Integral Equations 9 (1996) 119–136. [MathSciNet] [Google Scholar]
  10. X. Xu, Existence for a model arising from the in situ vitrification process. J. Math. Anal. Appl. 271 (2002) 333–342. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you