Free Access
Issue
ESAIM: M2AN
Volume 38, Number 4, July-August 2004
Page(s) 653 - 672
DOI https://doi.org/10.1051/m2an:2004028
Published online 15 August 2004
  1. A. Alonso, A. Dello Russo, C. Otero-Souto, C. Padra and R. Rodríguez, An adaptive finite element scheme to solve fluid-structure vibration problems on non-matching grids. Comput. Visual. Sci. 4 (2001) 67–78. [CrossRef] [Google Scholar]
  2. I. Babuška and J. Osborn, Eigenvalue problems, in Handbook of Numerical Analysis, P.G. Ciarlet and J.L. Lions Eds., Vol. II, North-Holland, Amsterdam (1991) 641–787. [Google Scholar]
  3. A. Bermúdez, R. Durán and R. Rodríguez, Finite element solution of incompressible fluid-structure vibration problems. Internat. J. Numer. Methods Eng. 40 (1997) 1435–1448. [CrossRef] [Google Scholar]
  4. A. Bermúdez, R. Durán and R. Rodríguez, Finite element analysis of compressible and incompressible fluid-solid systems, Math. Comp. 67 (1998) 111–136. [Google Scholar]
  5. A. Bermúdez and R. Rodríguez, Finite element analysis of sloshing and hydroelastic vibrations under gravity. ESAIM: M2AN 33 (1999) 305–327. [CrossRef] [EDP Sciences] [Google Scholar]
  6. A. Bermúdez, R. Rodríguez and D. Santamarina, A finite element solution of an added mass formulation for coupled fluid-solid vibrations. Numer. Math. 87 (2000) 201–227. [CrossRef] [MathSciNet] [Google Scholar]
  7. P.G. Ciarlet, Basic error estimates for elliptic problems, in Handbook of Numerical Analysis, P.G. Ciarlet and J.L. Lions Eds., Vol. II, North-Holland, Amsterdam (1991) 17–351. [Google Scholar]
  8. M. Costabel, Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal. 19 (1988) 613–621. [CrossRef] [MathSciNet] [Google Scholar]
  9. V.J. Ervin, N. Heuer and E.P. Stephan, On the h-p version of the boundary element method for Symm's integral equation on polygons. Comput. Methods Appl. Mech. Eng. 110 (1993) 25–38. [CrossRef] [Google Scholar]
  10. G.N. Gatica and G.C. Hsiao, Boundary-Field Equation Methods for a Class of Nonlinear Problems. Longman, Harlow, Pitman Res. Notes Math. Ser. 331 (1995). [Google Scholar]
  11. P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman, Boston, MA, Monogr. Stud. Math. 24 (1985). [Google Scholar]
  12. M. Hamdi, Y. Ousset and G. Verchery, A displacement method for the analysis of vibrations of coupled fluid-structure systems. Internat. J. Numer. Methods Eng. 13 (1978) 139–150. [CrossRef] [Google Scholar]
  13. G.C. Hsiao, On the boundary-field equation methods for fluid-structure interactions, in Problems and Methods in Mathematical Physics (Chemnitz, 1993), L. Jentsch and F. Tröltzsch, Eds. Teubner, Stuttgart, Teubner-Texte Math. 134 (1994) 79–88. [Google Scholar]
  14. G.C. Hsiao and W.L. Wendland, A finite element method for some integral equations of the first kind. J. Math. Anal. Appl. 58 (1977) 449–481. [CrossRef] [MathSciNet] [Google Scholar]
  15. G.C. Hsiao, R.E. Kleinman and G.F. Roach, Weak solutions of fluid-solid interaction problems. Math. Nachr. 218 (2000) 139–163. [CrossRef] [MathSciNet] [Google Scholar]
  16. G.C. Hsiao, R.E. Kleinman and L.S. Schuetz, On variational formulations of boundary value problems for fluid-solid interactions. Elastic Wave Propagation (Galway, 1988). North-Holland, Amsterdam, North-Holland Ser. Appl. Math. Mech. 35 (1989) 321–326. [Google Scholar]
  17. W. McLean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000). [Google Scholar]
  18. D. Mercier, Some systems of PDE on polygonal networks, in Partial Differential Equations on Multistructures (Luminy, 1999), F.A. Mehmeti, J. von Below and S. Nicaise Eds., Dekker, New York, Lect. Notes Pure Appl. Math. 219 (2001) 163–182. [Google Scholar]
  19. D. Mercier, Problèmes de transmission sur des réseaux polygonaux pour des systèmes d'EDP. Ann. Fac. Sci. Toulouse Math. 10 (2001) 107–162. [MathSciNet] [Google Scholar]
  20. H.J.-P. Morand and R. Ohayon, Fluid-Structure Interaction. J. Wiley & Sons, Chichester (1995). [Google Scholar]
  21. P. Ryan, Eigenvalue and eigenfunction error estimates for finite element formulations of linear hydroelasticity. Math. Comp. 70 (2001) 471–487. [CrossRef] [MathSciNet] [Google Scholar]
  22. M.E. Torrejón, Solución Numérica de Problemas de Vibraciones Hidroelásticas. Degree Thesis in Mathematical Engineering, Universidad de Concepción, Chile (2003). [Google Scholar]
  23. O.C. Zienkiewicz and R.L. Taylor, The Finite Element Method. Mc Graw Hill, London (1989). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you