Free Access
Volume 38, Number 5, September-October 2004
Page(s) 811 - 820
Published online 15 October 2004
  1. J.M. Ball, A version of the fundamental theorem for Young measures. Partial differential equations and continuum models of phase transitions. M Rascle, D. Serre, M. Slemrod Eds. Lect. Notes Phys. 344 (1989) 207–215. [Google Scholar]
  2. J.M. Ball and R.D. James, Fine phase mixtures as minimizers of energy. Arch. Rational Mech. Anal. 100 (1987) 13–52. [Google Scholar]
  3. S. Bartels, Reliable and efficient approximation of polyconvex envelopes. SIAM J. Numer. Anal. (accepted) [Preprints of the DFG Priority Program “Multiscale Problems”, No. 76 (2002) (]. [Google Scholar]
  4. S. Bartels, Error estimates for adaptive Young measure approximation in scalar nonconvex variational problems. SIAM J. Numer. Anal. 42 (2004) 505–529. [CrossRef] [MathSciNet] [Google Scholar]
  5. S. Bartels and A. Prohl, Multiscale resolution in the computation of crystalline microstructure. Numer. Math. 96 (2004) 641–660. [CrossRef] [MathSciNet] [Google Scholar]
  6. C. Carstensen and P. Plecháč, Numerical solution of the scalar double-well problem allowing microstructure. Math. Comp. 66 (1997) 997–1026. [Google Scholar]
  7. C. Carstensen and T. Roubíček, Numerical approximation of Young measures in non-convex variational problems. Numer. Math. 84 (2000) 395–414. [CrossRef] [MathSciNet] [Google Scholar]
  8. M. Chipot and S. Müller, Sharp energy estimates for finite element approximations of non-convex problems, in Variations of domain and free boundary problems, in solid mechanics, Solid Mech. Appl. 66 (1997) 317–327. [Google Scholar]
  9. B. Dacorogna, Direct methods in the calculus of variations. Appl. Math. Sci. 78 (1989). [Google Scholar]
  10. B. Dacorogna and J.-P. Haeberly, Some numerical methods for the study of the convexity notions arising in the calculus of variations. RAIRO Modél. Math. Anal. Numér. 32 (1998) 153–175. [MathSciNet] [Google Scholar]
  11. G. Dolzmann, Numerical computation of rank-one convex envelopes. SIAM J. Numer. Anal. 36 (1999) 1621–1635. [CrossRef] [MathSciNet] [Google Scholar]
  12. G. Dolzmann and N.J. Walkington, Estimates for numerical approximations of rank one convex envelopes. Numer. Math. 85 (2000) 647–663. [CrossRef] [MathSciNet] [Google Scholar]
  13. J.L. Ericksen, Constitutive theory for some constrained elastic crystals. Int. J. Solids Struct. 22 (1986) 951–964. [CrossRef] [Google Scholar]
  14. K. Hackl and U. Hoppe, On the calculation of microstructures for inelastic materials using relaxed energies. IUTAM symposium on computational mechanics of solid materials at large strains, C. Miehe Ed., Solid Mech. Appl. 108 (2003) 77–86. [Google Scholar]
  15. R.V. Kohn, The relaxation of a double-well energy. Contin. Mech. Thermodyn. 3 (1991) 193–236. [Google Scholar]
  16. R.V. Kohn and G. Strang, Optimal design and relaxation of variational problems. I.-III. Commun. Pure Appl. Math. 39 (1986) 353–377. [CrossRef] [MathSciNet] [Google Scholar]
  17. M. Kružik, Numerical approach to double well problems. SIAM J. Numer. Anal. 35 (1998) 1833–1849. [CrossRef] [MathSciNet] [Google Scholar]
  18. M. Luskin, On the computation of crystalline microstructure. Acta Numerica 5 (1996) 191–257. [CrossRef] [Google Scholar]
  19. C. Miehe and M. Lambrecht, Analysis of micro-structure development in shearbands by energy relaxation of incremental stress potentials: large-strain theory for standard dissipative materials. Internat. J. Numer. Methods Engrg. 58 (2003) 1–41. [CrossRef] [MathSciNet] [Google Scholar]
  20. S. Müller, Variational models for microstructure and phase transitions. Lect. Notes Math. 1713 (1999) 85–210. [CrossRef] [Google Scholar]
  21. R.A. Nicolaides, N. Walkington and H. Wang, Numerical methods for a nonconvex optimization problem modeling martensitic microstructure. SIAM J. Sci. Comput. 18 (1997) 1122–1141. [CrossRef] [MathSciNet] [Google Scholar]
  22. T. Roubíček, Relaxation in optimization theory and variational calculus. De Gruyter Series in Nonlinear Analysis Appl. 4 New York (1997). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you