Free Access
Issue
ESAIM: M2AN
Volume 38, Number 5, September-October 2004
Page(s) 781 - 810
DOI https://doi.org/10.1051/m2an:2004039
Published online 15 October 2004
  1. N. Abdellatif, Méthodes spectrales et d'éléments spectraux pour les équations de Navier–Stokes axisymétriques. Thesis, Université Pierre et Marie Curie, Paris (1997). [Google Scholar]
  2. N. Abdellatif, A mixed stream function and vorticity formulation for axisymmetric Navier–Stokes equations. J. Comp. Appl. Math. 117 (2000) 61–83. [CrossRef] [Google Scholar]
  3. M. Amara, H. Barucq and M. Duloué, Une formulation mixte convergente pour le système de Stokes tridimensionnel. C. R. Acad. Sci. Paris Série I 328 (1999) 935–938. [Google Scholar]
  4. M. Amara, H. Barucq and M. Duloué, Une formulation mixte convergente pour les équations de Stokes tridimensionnelles. Actes des VIes Journées Zaragoza-Pau de Mathématiques Appliquées et de Statistiques, Publ. Univ. Pau, Pau (2001) 61–68. [Google Scholar]
  5. C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional nonsmooth domains. Math. Meth. Appl. Sci. 21 (1998) 823–864. [CrossRef] [MathSciNet] [Google Scholar]
  6. F. Ben Belgacem and C. Bernardi, Spectral element discretization of the Maxwell equations. Math. Comput. 68 (1999) 1497–1520. [CrossRef] [Google Scholar]
  7. C. Bernardi and Y. Maday, Approximations spectrales de problèmes aux limites elliptiques. Springer-Verlag. Math. Appl. 10 (1992). [Google Scholar]
  8. C. Bernardi, V. Girault and Y. Maday, Mixed spectral element approximation of the Navier-Stokes equations in the stream-function and vorticity formulation. IMA J. Numer. Anal. 12 (1992) 565–608. [CrossRef] [MathSciNet] [Google Scholar]
  9. C. Bernardi, M. Dauge and Y. Maday, Interpolation of nullspaces for polynomial approximation of divergence-free functions in a cube, in Proc. Conf. Boundary Value Problems and Integral Equations in Non smooth Domains, M. Costabel, M. Dauge and S. Nicaise Eds., Dekker. Lect. Notes Pure Appl. Math. 167 (1994) 27–46. [Google Scholar]
  10. C. Bernardi, M. Dauge, Y. Maday and M. Azaïez, Spectral Methods for Axisymmetric Domains. Gauthier-Villars & North-Holland. Ser. Appl. Math. 3 (1999). [Google Scholar]
  11. C. Canuto and A. Quarteroni, Approximation results for orthogonal polynomials in Sobolev spaces. Math. Comput. 38 (1982) 67–86. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  12. M. Costabel and M. Dauge, Singularities of electromagnetic fields in polyhedral domains. Arch. Ration. Mech. Anal. 151 (2000) 221–276. [CrossRef] [MathSciNet] [Google Scholar]
  13. M. Duloué, Analyse numérique des problèmes d'écoulement de fluides. Thesis, Université de Pau et des Pays de l'Adour, Pau (2001). [Google Scholar]
  14. V. Girault and P.-A. Raviart, An analysis of a mixed finite element method for the Navier-Stokes equations. Numer. Math. 33 (1979) 235–271. [CrossRef] [MathSciNet] [Google Scholar]
  15. V. Girault and P.-A. Raviart, Finite Element Methods for the Navier–Stokes Equations, Theory and Algorithms. Springer-Verlag (1986). [Google Scholar]
  16. R. Glowinski and O. Pironneau, Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem. SIAM Review 21 (1979) 167–212. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you