Free Access
Issue |
ESAIM: M2AN
Volume 38, Number 5, September-October 2004
|
|
---|---|---|
Page(s) | 741 - 756 | |
DOI | https://doi.org/10.1051/m2an:2004033 | |
Published online | 15 October 2004 |
- H. Blatter, Velocity and stress fields in grounded glaciers: A simple algorithm for including deviatoric stress gradients. J. Glaciology 41 (1995) 333–344. [Google Scholar]
- G.F. Carey, Computational Grids: Generation, Adaptation and Solution Strategies. Taylor & Francis (1997). [Google Scholar]
- S.-S. Chow, Finite element error estimates for nonlinear elliptic equations of monotone type. Numer. Math. 54 (1989) 373–393. [CrossRef] [MathSciNet] [Google Scholar]
- S.-S. Chow, Finite element error estimates for a blast furnace gas flow problem. SIAM J. Numer. Analysis 29 (1992) 769–780. [CrossRef] [Google Scholar]
- S.-S. Chow and G.F. Carey, Numerical approximation of generalized Newtonian fluids using Heindl elements: I. Theoretical estimates. Internat. J. Numer. Methods Fluids 41 (2003) 1085–1118. [CrossRef] [MathSciNet] [Google Scholar]
- J. Colinge and H. Blatter, Stress and velocity fields in glaciers: Part I. Finite-difference schemes for higher-order glacier models. J. Glaciology 44 (1998) 448–456. [Google Scholar]
- J. Colinge and J. Rappaz, A strongly nonlinear problem arising in glaciology. ESAIM: M2AN 33 (1999) 395–406. [CrossRef] [EDP Sciences] [Google Scholar]
- J.W. Glen, The Flow Law of Ice, Internat. Assoc. Sci. Hydrology Pub. 47, Symposium at Chamonix 1958 – Physics of the Movement of the Ice (1958) 171–183. [Google Scholar]
- R. Glowinski and J. Rappaz, Approximation of a nonlinear elliptic problem arising in a non-Newtonian fluid flow model in glaciology. ESAIM: M2AN 37 (2003) 175–186. [Google Scholar]
- W. Han, J. Soren and I. Shimansky, The Kačanov method for some nonlinear problems. Appl. Num. Anal. 24 (1997) 57–79. [Google Scholar]
- C. Johnson and V. Thomee, Error estimates for a finite element approximation of a minimal surface. Math. Comp. 29 (1975) 343–349. [CrossRef] [MathSciNet] [Google Scholar]
- W.B. Liu and J.W. Barrett, Finite element approximation of some degenerate monotone quasilinear elliptic systems. SIAM J. Numer. Analysis 33 (1996) 98–106. [Google Scholar]
- W.S.B. Patterson, The Physics of Glaciers, 2nd edition. Pergamon Press (1981). [Google Scholar]
- E. Zeidler, Nonlinear Functional Analysis and Its Applications II/B. Nonlinear Monotone Operators, Springer-Verlag (1990). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.