Free Access
Issue
ESAIM: M2AN
Volume 38, Number 6, November-December 2004
Page(s) 903 - 929
DOI https://doi.org/10.1051/m2an:2004044
Published online 15 December 2004
  1. B. Achchab, S. Achchab and A. Agouzal, Hierarchical robust a posteriori error estimator for a singularly pertubed problem. C.R Acad. Paris I 336 (2003) 95–100. [Google Scholar]
  2. B. Achchab, A. Agouzal, J. Baranger and J.F. Maitre, Estimateur d'erreur a posteriori hiérarchique. Application aux éléments finis mixtes. Numer. Math. 80 (1998) 159–179. [CrossRef] [MathSciNet] [Google Scholar]
  3. Y. Achdou and C. Bernardi, Un schéma de volumes ou éléments finis adaptatif pour les équations de Darcy à perméabilité variable. C.R Acad. Paris I 333 (2001) 693–698. [Google Scholar]
  4. Y. Achdou, C. Bernardi and F. Coquel, A priori and a posteriori analysis of finite volume discretizations of Darcy's equations. Numer. Math. 96 (2003) 17–42. [CrossRef] [MathSciNet] [Google Scholar]
  5. M. Ainsworth and J.T. Oden, A posteriori error estimation in finite element analysis. Wiley-Interscience Publication (2000). [Google Scholar]
  6. L. Angermann, A posteriori error estimates for FEM with violated Galerkin orthogonality. Numer. Methods Partial Differential Equations 18 (2002) 241–259. [CrossRef] [MathSciNet] [Google Scholar]
  7. D.N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér. 19 (1985) 7–32. [MathSciNet] [Google Scholar]
  8. R. Bank and K. Smith, A posteriori estimates based on hierarchical bases. SIAM J. Numer. Anal. 30 (1991) 921–935. [CrossRef] [Google Scholar]
  9. R.E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations. Math. Comp. 44 (1985) 283–301. [CrossRef] [MathSciNet] [Google Scholar]
  10. R. Becker, P. Hansbo and M.G. Larson, Energy norm a posteriori error estimation for discontinuous Galerkin methods. Comput. Methods Appl. Mech. Engrg. 192 (2003) 723–733. [CrossRef] [MathSciNet] [Google Scholar]
  11. C. Bernardi, private communication. [Google Scholar]
  12. C. Bernardi and R. Verfürth, Adaptive finite element methods for elliptic equations with non-smooth coefficients. Numer. Math. 85 (2000) 579–608. [CrossRef] [MathSciNet] [Google Scholar]
  13. D. Braess, Finite elements. Cambridge Univ. Press (1997). [Google Scholar]
  14. C. Carstensen, A posteriori error estimate for the mixed finite element method. Math. Comp. 66 (1997) 465–476. [CrossRef] [MathSciNet] [Google Scholar]
  15. C. Carstensen and A. Funken, A posteriori error control in low-order finite element discretizations of incompressible stationary flow problems. Math. Comp. 70 (2000) 1353–1381. [CrossRef] [Google Scholar]
  16. B. Courbet and J.-P. Croisille, Finite volume box schemes on triangular meshes. RAIRO Modél. Math. Anal. Numér. 32 (1998) 631–649. [MathSciNet] [Google Scholar]
  17. J.-P. Croisille, Finite volume box schemes and mixed methods. ESAIM: M2AN 31 (2000) 1087–1106. [CrossRef] [EDP Sciences] [Google Scholar]
  18. J.-P. Croisille and I. Greff, Some nonconforming mixed box schemes for elliptic problems. Numer. Methods Partial Differential Equations 8 (2002) 355–373. [CrossRef] [MathSciNet] [Google Scholar]
  19. M. Crouzeix and P.-A. Raviart, Conforming and nonconforming mixed finite element methods for solving the stationary Stokes equations I. RAIRO Anal. Numér. 3 (1973) 33–75. [Google Scholar]
  20. E. Dari, R. Durán and C. Parda, Error estimators for nonconforming finite element approximations of the Stokes problem. Math. Comp. 64 (1995) 1017–1033. [CrossRef] [MathSciNet] [Google Scholar]
  21. E. Dari, R. Durán, C. Parda and V. Vampa, A posteriori error estimators for nonconforming finite element methods. RAIRO Modél Math. Anal. Numér. 30 (1996) 385–400. [CrossRef] [MathSciNet] [Google Scholar]
  22. A. Ern and J.-L. Guermond, Theory and practice of finite elements, Appl. Math. Ser., Springer, New York 159 (2004). [Google Scholar]
  23. M. Fortin and M. Soulié, A non-conforming piecewise quadratic finite element on triangles. Int. J. Num. Meth. Engrg. 19 (1983) 505–520. [CrossRef] [MathSciNet] [Google Scholar]
  24. R.H.W. Hoppe and B. Wohlmuth, Element-oriented and edge-oriented local error estimators for non-conforming finite element methods. RAIRO Modél. Math. Anal. Numér. 30 (1996) 237–263. [MathSciNet] [Google Scholar]
  25. V. John, A posteriori L2-error estimates for the nonconforming P1/P0-finite element discretization of the Stokes equations. J. Comput. Appl. Math. 96 (1998) 99–116. [CrossRef] [MathSciNet] [Google Scholar]
  26. G. Kanschat and F.-T. Suttmeier, A posteriori error estimates for non-conforming finite element schemes. Calcolo 36 (1999) 129–141. [CrossRef] [MathSciNet] [Google Scholar]
  27. O. Karakashian and F. Pascal, A posteriori error estimates for a discontinuous Galerkin approximation of second order elliptic problems. SIAM J. Numer. Anal. 41 (2003) 2374–2399. [CrossRef] [MathSciNet] [Google Scholar]
  28. P.-A. Raviart and J.-M. Thomas, A mixed finite element method for second order elliptic problems, in Mathematical Aspects of the Finite Element Method, E. Magenes and I. Galligani Eds., Springer-Verlag, New York, Lect. Notes Math. 606 (1977). [Google Scholar]
  29. F. Schieweck, A posteriori error estimates with post-processing for nonconforming finite elements. ESAIM: M2AN 36 (2002) 489–503. [CrossRef] [EDP Sciences] [Google Scholar]
  30. J.-M. Thomas and D. Trujillo, Mixed finite volume methods. Int. J. Num. Meth. Engrg. 46 (1999) 1351–1366. [CrossRef] [Google Scholar]
  31. R. Verfürth, A posteriori error estimators for the Stokes equations. II. Non-conforming discretizations. Numer. Math. 60 (1991) 235–249. [CrossRef] [MathSciNet] [Google Scholar]
  32. R. Verfürth, A review of a posteriori error estimation and adaptative mesh-refinement techniques. Chichester, England (1996). [Google Scholar]
  33. B.I. Wohlmuth and R.H.W. Hoppe, A comparison of a posteriori error estimators for mixed finite element discretizations by Raviart-Thomas. Math. Comp. 68 (1999) 1347–1378. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you