Free Access
Volume 38, Number 6, November-December 2004
Page(s) 1071 - 1091
Published online 15 December 2004
  1. E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25 (2004) 2050–2065. [CrossRef] [MathSciNet] [Google Scholar]
  2. E. Audusse and M.-O. Bristeau, Transport of pollutant in shallow water. A two time steps kinetic method. ESAIM: M2AN 37 (2003) 389–416. [CrossRef] [EDP Sciences] [Google Scholar]
  3. D.S. Bale, R.J. LeVeque, S. Mitran and J.A. Rossmanith, A wave propagation method for conservation laws and balance laws with spatially varying flux functions. SIAM J. Sci. Comput. 24 (2002) 955–978. [CrossRef] [MathSciNet] [Google Scholar]
  4. M.-O. Bristeau and B. Perthame, Transport of pollutant in shallow water using kinetic schemes. CEMRACS, Orsay (electronic), ESAIM Proc., Paris. Soc. Math. Appl. Indust. 10 (1999) 9–21. [Google Scholar]
  5. A. Chertock, A. Kurganov and G. Petrova, Finite-volume-particle methods for models of transport of pollutant in shallow water. J. Sci. Comput. (to appear). [Google Scholar]
  6. A. Cohen and B. Perthame, Optimal approximations of transport equations by particle and pseudoparticle methods. SIAM J. Math. Anal. 32 (2000) 616–636. [CrossRef] [MathSciNet] [Google Scholar]
  7. B. Engquist, P. Lötstedt and B. Sjögreen, Nonlinear filters for efficient shock computation. Math. Comp. 52 (1989) 509–537. [Google Scholar]
  8. A.F. Filippov, Differential equations with discontinuous right-hand side. (Russian). Mat. Sb. (N.S.) 51 (1960) 99–128. [MathSciNet] [Google Scholar]
  9. A.F. Filippov, Differential equations with discontinuous right-hand side. AMS Transl. 42 (1964) 199–231. [Google Scholar]
  10. A.F. Filippov, Differential equations with discontinuous right-hand side, Translated from the Russian. Kluwer Academic Publishers Group, Dordrecht. Math. Appl. (Soviet Series) 18 (1988). [Google Scholar]
  11. T. Gallouët, J.-M. Hérard and N. Seguin, Some approximate Godunov schemes to compute shallow-water equations with topography. Comput. Fluids 32 (2003) 479–513. [CrossRef] [MathSciNet] [Google Scholar]
  12. J.F. Gerbeau and B. Perthame, Derivation of viscous Saint-Venant system for laminar shallow water; numerical validation. Discrete Contin. Dyn. Syst. Ser. B 1 (2001) 89–102. [CrossRef] [MathSciNet] [Google Scholar]
  13. S. Gottlieb, C.-W. Shu and E. Tadmor, High order time discretization methods with the strong stability property. SIAM Rev. 43 (2001) 89–112. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  14. A. Kurganov and D. Levy, Central-upwind schemes for the Saint-Venant system. ESAIM: M2AN 36 (2002) 397–425. [CrossRef] [EDP Sciences] [Google Scholar]
  15. A. Kurganov and C.-T. Lin, On the reduction of numerical dissipation in central-upwind schemes (in preparation). [Google Scholar]
  16. A. Kurganov, S. Noelle and G. Petrova, Semi-discrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21 (2001) 707–740. [Google Scholar]
  17. A. Kurganov and G. Petrova, Central schemes and contact discontinuities. ESAIM: M2AN 34 (2000) 1259–1275. [CrossRef] [EDP Sciences] [Google Scholar]
  18. A. Kurganov and E. Tadmor, New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160 (2000) 241–282. [Google Scholar]
  19. B. van Leer, Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov's method. J. Comput. Phys. 32 (1979) 101–136. [Google Scholar]
  20. H. Nessyahu and E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws. J. Comput. Phys. 87 (1990) 408–463. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  21. B. Perthame and C. Simeoni, A kinetic scheme for the Saint-Venant system with a source. Calcolo 38 (2001) 201–231. [CrossRef] [MathSciNet] [Google Scholar]
  22. P.A. Raviart, An analysis of particle methods, in Numerical methods in fluid dynamics (Como, 1983). Lect. Notes Math. 1127 (1985) 243–324. [CrossRef] [Google Scholar]
  23. A.J.C. de Saint-Venant, Théorie du mouvement non-permanent des eaux, avec application aux crues des rivières et à l'introduction des marées dans leur lit. C. R. Acad. Sci. Paris 73 (1871) 147–154. [Google Scholar]
  24. P.K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws. SIAM J. Numer. Anal. 21 (1984) 995–1011. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you