Free Access
Volume 38, Number 6, November-December 2004
Page(s) 1035 - 1054
Published online 15 December 2004
  1. M.J. Ablowitz and P.A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering. Cambridge University Press, London Math. Soc. Lect. Note Series 149 (1991).
  2. M.J. Ablowitz and H. Segur, Solitons and the inverse scattering transform. SIAM Stud. Appl. Math., SIAM, Philadelphia 4 (1981).
  3. V.A. Arkadiev, A.K. Pogrebkov and M.C. Polivanov, Inverse scattering transform method and soliton solutions for the Davey-Stewartson II equation. Physica D 36 (1989) 189–196. [CrossRef] [MathSciNet]
  4. W. Bao, S. Jin and P.A. Markowich, Time-splitting spectral approximations for the Schrödinger equation in the semiclassical regime. J. Comp. Phys. 175 (2002) 487–524. [CrossRef] [MathSciNet]
  5. W. Bao, N.J. Mauser and H.P. Stimming, Effective one particle quantum dynamics of electrons: a numerical study of the Schrödinger-Poisson-Xα model. CMS 1 (2003) 809–831.
  6. C. Besse, Schéma de relaxation pour l'équation de Schrödinger non linéaire et les systèmes de Davey et Stewartson. C. R. Acad. Sci. Paris I 326 (1998) 1427–1432.
  7. C. Besse and C.H. Bruneau, Numerical study of elliptic-hyperbolic Davey-Stewartson system: dromions simulation and blow-up. Math. Mod. Meth. Appl. Sci. 8 (1998) 1363–1386. [CrossRef]
  8. C. Besse, B. Bidégaray and S. Descombes, Order estimates in time of the splitting methods for the nonlinear Schrödinger equation. SIAM J. Numer. Anal. 40 (2002) 26–40. [CrossRef] [MathSciNet]
  9. S. Descombes, Convergence of a splitting method of high order for reaction-diffusion systems. Math. Comp. 70 (2001) 1481–1501. [CrossRef] [MathSciNet]
  10. V.D. Djordjević and L.G. Redekopp, On two-dimensional packets of capillary-gravity waves. J. Fluid Mech. 79 (1977) 703–714. [CrossRef] [MathSciNet]
  11. J.M. Ghidaglia and J.C. Saut, On the initial value problem for the Davey-Stewartson systems. Nonlinearity 3 (1990) 475–506. [CrossRef] [MathSciNet]
  12. M. Guzmán-Gomez, Asymptotic behaviour of the Davey-Stewartson system. C. R. Math. Rep. Acad. Sci. Canada 16 (1994) 91–96. [MathSciNet]
  13. R.H. Hardin and F.D. Tappert, Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations. SIAM Rev. Chronicle 15 (1973) 423.
  14. N. Hayashi, Local existence in time solutions to the elliptic-hyperbolic Davey-Stewartson system without smallness condition on the data. J. Anal. Math. LXXIII (1997) 133–164.
  15. N. Hayashi and H. Hirata, Global existence and asymptotic behaviour of small solutions to the elliptic-hyperbolic Davey-Stewartson system. Nonlinearity 9 (1996) 1387–1409. [CrossRef] [MathSciNet]
  16. N. Hayashi and J.C. Saut, Global existence of small solutions to the Davey-Stewartson and Ishimori systems. Diff. Int. Eq. 8 (1995) 1657–1675.
  17. M.J. Landman, G.C. Papanicolaou, C. Sulem and P.-L. Sulem, Rate of blowup for solutions of the Nonlinear Schrödinger equation at critical dimension. Phys. Rev. A 38 (1988) 3837–3843. [CrossRef] [MathSciNet] [PubMed]
  18. F. Merle, Construction of solutions with exactly k blowup points for the Schrödinger equation with critical nonlinearity. Comm. Math. Phys. 129 (1990) 223–240. [CrossRef] [MathSciNet]
  19. K. Nishinari, K. Abe and J. Satsuma, Multidimensional behaviour of an electrostatic ion wave in a magnetized plasma. Phys. Plasmas 1 (1994) 2559–2565. [CrossRef]
  20. T. Ozawa, Exact blow-up solutions to the Cauchy problem for the Davey-Stewartson systems. Proc. R. Soc. A 436 (1992) 345–349. [CrossRef]
  21. G.C. Papanicolaou, C. Sulem, P.-L. Sulem, X.P. Wang, The focusing singularity of the Davey-Stewartson equations for gravity-capillary surface waves. Physica D 72 (1994) 61–86. [CrossRef] [MathSciNet]
  22. C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse. Springer, New York (1999)
  23. P.W. White and J.A.C. Weideman, Numerical simulation of solitons and dromions in the Davey-Stewartson system. Math. Comput. Simul. 37 (1994) 469–479. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you