Free Access
Issue
ESAIM: M2AN
Volume 38, Number 6, November-December 2004
Page(s) 1011 - 1034
DOI https://doi.org/10.1051/m2an:2004048
Published online 15 December 2004
  1. A. Ajdari and J. Prost, Mouvement induit par un potentiel périodique de basse symétrie : diélectrophorèse pulse. C. R. Acad. Sci. Paris II 315 (1992) 1653. [Google Scholar]
  2. R.D. Astumian, Thermodynamics and kinetics of a Brownian motor. Science 276 (1997) 917–922. [CrossRef] [PubMed] [Google Scholar]
  3. J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84 (2000) 375–393. [CrossRef] [MathSciNet] [Google Scholar]
  4. M. Chipot, D. Kinderlehrer and M. Kowalczyk, A variational principle for molecular motors. Meccanica 38 (2003) 505–518. [CrossRef] [MathSciNet] [Google Scholar]
  5. C. Doering, B. Ermentrout and G. Oster, Rotary DNA motors. Biophys. J. 69 (1995) 2256–2267. [CrossRef] [PubMed] [Google Scholar]
  6. J. Dolbeault, D. Kinderlehrer and M. Kowalczyk, Remarks about the flashing rachet, in Proc. PASI 2003 (to appear). [Google Scholar]
  7. D.D. Hackney, The kinetic cycles of myosin, kinesin, and dynein. Ann. Rev. Physiol. 58 (1996) 731–750. [CrossRef] [Google Scholar]
  8. S. Hastings and D. Kinderlehrer, Remarks about diffusion mediated transport: thinking about motion in small systems. (to appear). [Google Scholar]
  9. J. Howard, Mechanics of Motor Proteins and the Cytoskeleton. Sinauer Associates, Inc. (2001). [Google Scholar]
  10. A.F. Huxley, Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem. 7 (1957) 255–318. [PubMed] [Google Scholar]
  11. R. Jordan, D. Kinderlehrer and F. Otto, The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal. 29 (1998) 1–17. [CrossRef] [MathSciNet] [Google Scholar]
  12. D. Kinderlehrer and M. Kowalczyk, Diffusion-mediated transport and the flashing ratchet. Arch. Rat. Mech. Anal. 161 (2002) 149–179. [CrossRef] [Google Scholar]
  13. D. Kinderlehrer and N. Walkington, Approximation of parabolic equations based upon Wasserstein's variational principle. ESAIM: M2AN 33 (1999) 837–852. [CrossRef] [EDP Sciences] [Google Scholar]
  14. J.S. Muldowney, Compound matrices and ordinary differential equations. Rocky Mountain J. Math. 20 (1990) 857–872. [CrossRef] [MathSciNet] [Google Scholar]
  15. Y. Okada and N. Hirokawa, A processive single-headed motor: kinesin superfamily protein KIF1A. Science 283 (1999) 19. [Google Scholar]
  16. Y. Okada and N. Hirokawa, Mechanism of the single headed processivity: diffusional anchoring between the K-loop of kinesin and the C terminus of tubulin, in Proc. Nat. Acad. Sciences 7 (2000) 640–645. [Google Scholar]
  17. F. Otto, Dynamics of labyrinthine pattern formation: a mean field theory. Arch. Rat. Mech. Anal. 141 (1998) 63–103. [CrossRef] [MathSciNet] [Google Scholar]
  18. F. Otto, The geometry of dissipative evolution equations: the porous medium equation. Comm. PDE 26 (2001) 101–174. [CrossRef] [MathSciNet] [Google Scholar]
  19. P. Palffy-Muhoray, T. Kosa and E. Weinan, Dynamics of a light driven molecular motor. Mol. Cryst. Liq. Cryst. 375 (2002) 577–591. [CrossRef] [Google Scholar]
  20. A. Parmeggiani, F. Jülicher, A. Ajdari and J. Prost, Energy transduction of isothermal ratchets: generic aspects and specific examples close and far from equilibrium. Phys. Rev. E 60 (1999) 2127–2140. [CrossRef] [Google Scholar]
  21. C.S. Peskin, G.B. Ermentrout and G.F. Oster, The correlation ratchet: a novel mechanism for generating directed motion by ATP hydrolysis, in Cell Mechanics and Cellular Engineering, V.C Mow et al. Eds., Springer, New York (1995). [Google Scholar]
  22. M. Protter and H. Weinberger, Maximum principles in differential equations, Prentice Hall, Englewood Cliffs, N.J. (1967). [Google Scholar]
  23. P. Reimann, Brownian motors: noisy transport far from equilibrium. Phys. Rep. 361 (2002) 57–265. [CrossRef] [MathSciNet] [Google Scholar]
  24. M. Schliwa, Molecular Motors. Wiley-VCH Verlag, Wennheim (2003). [Google Scholar]
  25. B. Schwarz, Totally positive differential systems. Pacific J. Math. 32 (1970) 203–230. [MathSciNet] [Google Scholar]
  26. A. Tudorascu, A one phase Stefan problem via Monge-Kantorovich theory. CNA Report 03-CNA-007. [Google Scholar]
  27. R.D. Vale and R.A. Milligan, The way things move: looking under the hood of motor proteins. Science 288 (2000) 88–95. [CrossRef] [PubMed] [Google Scholar]
  28. C. Villani, Topics in optimal transportation, Providence. AMS Graduate Studies in Mathematics 58 (2003). [Google Scholar]
  29. E. Zeidler, Nonlinear functional analysis and its applications. I Springer, New York (1986). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you