Free Access
Issue
ESAIM: M2AN
Volume 39, Number 1, January-February 2005
Page(s) 109 - 145
DOI https://doi.org/10.1051/m2an:2005001
Published online 15 March 2005
  1. R.A. Adams, Compact imbeddings of weighted Sobolev spaces on unbounded domains. J. Differential Equations 9 (1971) 325–334. [CrossRef] [MathSciNet] [Google Scholar]
  2. F. Alliot and C. Amrouche, Problème de Stokes dans Formula et espaces de Sobolev avec poids. C. R. Acad. Sci. Paris Sér. I Math. 325 (1997) 1247–1252. [MathSciNet] [Google Scholar]
  3. C. Amrouche, V. Girault and J. Giroire, Weighted Sobolev spaces for Laplace's equation in Formula . J. Math. Pures Appl. (9) 73 (1994) 579–606. [MathSciNet] [Google Scholar]
  4. C. Amrouche, V. Girault and J. Giroire, Dirichlet and Neumann exterior problems for the n-dimensional Laplace operator: an approach in weighted Sobolev spaces. J. Math. Pures Appl. (9) 76 (1997) 55–81. [CrossRef] [MathSciNet] [Google Scholar]
  5. J. Bérenger, A perfectly matched layer for absoption of electromagnetics waves. J. Comput. Physics 114 (1994) 185–200. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  6. J. Bérenger, Perfectly matched layer for the fdtd solution of wave-structure interaction problems. IEEE Trans. Antennas Propagat. 44 (1996) 110–117. [CrossRef] [Google Scholar]
  7. P. Bettess and O.C. Zienkiewicz, Diffraction and refraction of surface waves using finite and infinite elements. Internat. J. Numer. Methods Engrg. 11 (1977) 1271–1290. [CrossRef] [MathSciNet] [Google Scholar]
  8. T.Z. Boulmezaoud, Vector potentials in the half-space of Formula . C. R. Acad. Sci. Paris Sér. I Math. 332 (2001) 711–716. [MathSciNet] [Google Scholar]
  9. T.Z. Boulmezaoud, On the Stokes system and on the biharmonic equation in the half-space: an approach via weighted Sobolev spaces. Math. Methods Appl. Sci. 25 (2002) 373–398. [CrossRef] [MathSciNet] [Google Scholar]
  10. T.Z. Boulmezaoud, On the Laplace operator and on the vector potential problems in the half-space: an approach using weighted spaces. Math. Methods Appl. Sci. 26 (2003) 633–669. [CrossRef] [MathSciNet] [Google Scholar]
  11. D.S. Burnett, A three-dimensional acoustic infinite element based on a prolate spheroidal multipole expansion. J. Acoust. Soc. Amer. 96 (1994) 2798–2816. [CrossRef] [MathSciNet] [Google Scholar]
  12. C. Canuto, S.I. Hariharan, L. Lustman, Spectral methods for exterior elliptic problems. Numer. Math. 46 (1985) 505–520. [CrossRef] [MathSciNet] [Google Scholar]
  13. Y. Choquet-Bruhat and D. Christodoulou, Elliptic systems in Formula spaces on manifolds which are Euclidean at infinity. Acta Math. 146 (1981) 129–150. [CrossRef] [MathSciNet] [Google Scholar]
  14. Ph.-G. Ciarlet, The finite element method for elliptic problems. North-Holland Publishing Co., Amsterdam (1978). [Google Scholar]
  15. D.L. Colton and R. Kress, Integral equation methods in scattering theory. Pure Appl. Math. John Wiley & Sons Inc., New York (1983). [Google Scholar]
  16. L. Demkowicz and F. Ihlenburg, Analysis of a coupled finite-infinite element method for exterior Helmholtz problems. Numer. Math. 88 (2001) 43–73. [CrossRef] [MathSciNet] [Google Scholar]
  17. J. Deny and J.L. Lions, Les espaces du type de Beppo Levi. Ann. Inst. Fourier, Grenoble 5 (1955) 305–370, (1953–54). [Google Scholar]
  18. K. Gerdes, A summary of infinite element formulations for exterior Helmholtz problems. Comput. Methods Appl. Mech. Engrg. 164 (1998) 95–105. [CrossRef] [MathSciNet] [Google Scholar]
  19. K. Gerdes and L. Demkowicz, Solution of 3D-Laplace and Helmholtz equations in exterior domains using hp-infinite elements. Comput. Methods Appl. Mech. Engrg. 137 (1996) 239–273. [CrossRef] [MathSciNet] [Google Scholar]
  20. V. Girault, The divergence, curl and Stokes operators in exterior domains of Formula . In Recent developments in theoretical fluid mechanics (Paseky, 1992), Pitman Res. Notes Math. Ser. Longman Sci. Tech., Harlow 291 (1993) 34–77. [Google Scholar]
  21. V. Girault, The Stokes problem and vector potential operator in three-dimensional exterior domains: an approach in weighted Sobolev spaces. Differential Integral Equations 7 (1994) 535–570. [MathSciNet] [Google Scholar]
  22. J. Giroire, Étude de quelques problèmes aux limites extérieures et résolution par équations intégrales. Thèse de Doctorat d'Etat, Université Pierre et Marie Curie, Paris (1987). [Google Scholar]
  23. J. Giroire and J.-C. Nédélec, Numerical solution of an exterior Neumann problem using a double layer potential. Math. Comp. 32 (1978) 973–990. [CrossRef] [MathSciNet] [Google Scholar]
  24. L. Halpern, A spectral method for the Stokes problem in three-dimensional unbounded domains. Math. Comp. 70 (2001) 1417–1436 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  25. B. Hanouzet, Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace. Rend. Sem. Mat. Univ. Padova 46 (1971) 227–272. [MathSciNet] [Google Scholar]
  26. G.H. Hardy, J.E. Littlewood and G. Pólya, Inequalities. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1988). [Google Scholar]
  27. L. Hörmander and J.L. Lions, Sur la complétion par rapport à une intégrale de Dirichlet. Math. Scand. 4 (1956) 259–270. [MathSciNet] [Google Scholar]
  28. F. Ihlenburg, Finite element analysis of acoustic scattering, volume 132 of Applied Mathematical Sciences. Springer-Verlag, New York (1998). [Google Scholar]
  29. V.A. Kondratev, Boundary value problems for elliptic equations in domains with conical or angular points. Trudy Moskov. Mat. Obvsvc. 16 (1967) 209–292. [Google Scholar]
  30. A. Kufner, Weighted Sobolev spaces. A Wiley-Interscience Publication. John Wiley & Sons Inc., New York (1985). [Google Scholar]
  31. M. Laib and T.Z. Boulmezaoud, Some properties of weighted sobolev spaces in unbounded domains. In preparation. [Google Scholar]
  32. M.N. Le Roux, Méthode d'éléments finis pour la résolution numérique de problèmes extérieurs en dimension 2. RAIRO Anal. Numér. 11 (1977) 27–60. [MathSciNet] [Google Scholar]
  33. V.G. Maz'ya and B.A. Plamenevskii, Weighted spaces with inhomogeneous norms, and boundary value problems in domains with conical points, in Elliptische Differentialgleichungen (Meeting, Rostock, 1977). Wilhelm-Pieck-Univ. Rostock (1978) 161–190. [Google Scholar]
  34. J.-C. Nédélec, Curved finite element methods for the solution of singular integral equations on surfaces in Formula . Comput. Methods Appl. Mech. Engrg. 8 (1976) 61–80. [CrossRef] [MathSciNet] [Google Scholar]
  35. J.-C. Nédélec. Résolution des Équations de Maxwell par Méthodes Intégrales. Cours de D.E.A. École Polytechnique, Paris (1998). [Google Scholar]
  36. V. Rokhlin, Solution of acoustic scattering problems by means of second kind integral equations. Wave Motion 5 (1983) 257–272. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you