Free Access
Issue
ESAIM: M2AN
Volume 39, Number 1, January-February 2005
Page(s) 79 - 108
DOI https://doi.org/10.1051/m2an:2005002
Published online 15 March 2005
  1. H. Brezis, Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master's Degree]. Masson, Paris (1983). Théorie et Applications. [Theory and applications]. [Google Scholar]
  2. C. Conca, J. San Martín H. and M. Tucsnak, Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid. Comm. Partial Differential Equations 25 (2000) 1019–1042. [MathSciNet] [Google Scholar]
  3. J.-M. Coron, On the controllability of 2-D incompressible perfect fluids. J. Math. Pures Appl. (9) 75 (1996) 155–188. [MathSciNet] [Google Scholar]
  4. J.-M. Coron, On the null asymptotic stabilization of the two-dimensional incompressible Euler equations in a simply connected domain. SIAM J. Control Optim. 37 (1999) 1874–1896 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
  5. B. Desjardins and M.J. Esteban, Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Ration. Mech. Anal. 146 (1999) 59–71. [CrossRef] [MathSciNet] [Google Scholar]
  6. B. Desjardins and M.J. Esteban, On weak solutions for fluid-rigid structure interaction: compressible and incompressible models. Comm. Partial Differential Equations 25 (2000) 1399–1413. [MathSciNet] [Google Scholar]
  7. E. Feireisl, On the motion of rigid bodies in a viscous fluid. Appl. Math. 47 (2002) 463–484. Mathematical theory in fluid mechanics, Paseky (2001). [CrossRef] [MathSciNet] [Google Scholar]
  8. E. Feireisl, On the motion of rigid bodies in a viscous compressible fluid. Arch. Ration. Mech. Anal. 167 (2003) 281–308. [CrossRef] [MathSciNet] [Google Scholar]
  9. E. Feireisl, On the motion of rigid bodies in a viscous incompressible fluid. J. Evol. Equ. 3 (2003) 419–441. Dedicated to Philippe Bénilan. [CrossRef] [MathSciNet] [Google Scholar]
  10. G.P. Galdi, On the steady self-propelled motion of a body in a viscous incompressible fluid. Arch. Ration. Mech. Anal. 148 (1999) 53–88. [Google Scholar]
  11. G.P. Galdi and A.L. Silvestre, Strong solutions to the problem of motion of a rigid body in a Navier-Stokes liquid under the action of prescribed forces and torques. In Nonlinear problems in mathematical physics and related topics, I. Int. Math. Ser. (N.Y.), Kluwer/Plenum, New York 1 (2002) 121–144. [Google Scholar]
  12. T. Gallay and C.E. Wayne, Invariant manifolds and the long-time asymptotics of the Navier-Stokes and vorticity equations on R2. Arch. Ration. Mech. Anal. 163 (2002) 209–258. [Google Scholar]
  13. N.S. Gilbarg and D. Trudinger, Elliptic partial differential equations of second order. Classics in Mathematics. Springer-Verlag, Berlin (2001). Reprint of the 1998 edition. [Google Scholar]
  14. O. Glass, Exact boundary controllability of 3-D Euler equation. ESAIM: COCV 5 (2000) 1–44 (electronic). [CrossRef] [EDP Sciences] [Google Scholar]
  15. C. Grandmont and Y. Maday, Existence for an unsteady fluid-structure interaction problem. ESAIM: M2AN 34 (2000) 609–636. [CrossRef] [EDP Sciences] [Google Scholar]
  16. M.D. Gunzburger, H.-C. Lee and G.A. Seregin, Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions. J. Math. Fluid Mech. 2 (2000) 219–266. [CrossRef] [MathSciNet] [Google Scholar]
  17. P. Hartman, Ordinary differential equations. Birkhäuser Boston, MA, second edition (1982). [Google Scholar]
  18. K.-H. Hoffmann and V.N. Starovoitov, On a motion of a solid body in a viscous fluid. Two-dimensional case. Adv. Math. Sci. Appl. 9 (1999) 633–648. [MathSciNet] [Google Scholar]
  19. K.-H. Hoffmann and V.N. Starovoitov, Zur Bewegung einer Kugel in einer zähen Flüssigkeit. Doc. Math. 5 (2000) 15–21 (electronic). [MathSciNet] [Google Scholar]
  20. N.V. Judakov, The solvability of the problem of the motion of a rigid body in a viscous incompressible fluid. Dinamika Splošn. Sredy, (Vyp. 18 Dinamika Zidkost. so Svobod. Granicami) 255 (1974) 249–253. [Google Scholar]
  21. T. Kato, On classical solutions of the two-dimensional nonstationary Euler equation. Arch. Rational Mech. Anal. 25 (1967) 188–200. [MathSciNet] [Google Scholar]
  22. K. Kikuchi, Exterior problem for the two-dimensional Euler equation. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1983) 63–92. [MathSciNet] [Google Scholar]
  23. J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I. Springer-Verlag, New York (1972). Translated from the French by P. Kenneth, Die Grundlehren der mathematischen Wissenschaften, Band 181. [Google Scholar]
  24. P.-L. Lions, Mathematical topics in fluid mechanics. Vol. 1, The Clarendon Press Oxford University Press, New York. Incompressible models, Oxford Science Publications. Oxford Lect. Ser. Math. Appl. 3 (1996). [Google Scholar]
  25. C. Rosier and L. Rosier, Well-posedness of a degenerate parabolic equation issuing from two-dimensional perfect fluid dynamics. Appl. Anal. 75 (2000) 441–465. [Google Scholar]
  26. J. San Martín H., V. Starovoitov and M. Tucsnak, Global weak solutions for the two dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Rational Mech. Anal. 161 (2002) 113–147. [CrossRef] [MathSciNet] [Google Scholar]
  27. D. Serre, Chute libre d'un solide dans un fluide visqueux incompressible. Existence. Japan J. Appl. Math. 4 (1987) 99–110. [Google Scholar]
  28. A.L. Silvestre, On the self-propelled motion of a rigid body in a viscous liquid and on the attainability of steady symmetric self-propelled motions. J. Math. Fluid Mech. 4 (2002) 285–326. [CrossRef] [MathSciNet] [Google Scholar]
  29. J. Simon, Compact sets in the space Lp(0,T;B). Ann. Mat. Pura Appl. (4) 146 (1987) 65–96. [Google Scholar]
  30. T. Takahashi, Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain. Adv. Differential Equations 8 (2003) 1499–1532. [MathSciNet] [Google Scholar]
  31. T. Takahashi and M. Tucsnak, Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid. J. Math. Fluid Mech. 6 (2004) 53–77. [CrossRef] [MathSciNet] [Google Scholar]
  32. R. Temam, Navier-Stokes equations. North-Holland Publishing Co., Amsterdam, third edition (1984). Theory and numerical analysis, with an appendix by F. Thomasset. [Google Scholar]
  33. J.L. Vázquez and E. Zuazua, Large time behavior for a simplified 1D model of fluid-solid interaction. Comm. Partial Differential Equations 28 (2003) 1705–1738. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you