Free Access
Volume 39, Number 2, March-April 2005
Page(s) 349 - 376
Published online 15 April 2005
  1. C. Abchir, Modélisation des écoulements dans les réservoirs souterrains avec prise en compte des interactions puits/réservoir. Thèse de doctorat, Université de Saint-Etienne (1992). [Google Scholar]
  2. M. Amara, D. Capatina, B. Denel and P. Terpolilli, Modelling, analysis and numerical approximation of flow with heat transfer in a petroleum reservoir, Preprint No. 0415, Université de Pau (2004) ( [Google Scholar]
  3. G. Bourdarot, Well testing: Interpretation methods. Editions Technip, Paris (1998). [Google Scholar]
  4. S. Brenner and R. Scott, The mathematical theory of Finite Element Methods. Springer Verlag, New York (1994). [Google Scholar]
  5. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer Verlag, New York (1991). [Google Scholar]
  6. G. Chavent and J.E. Roberts, A unified physical presentation of mixed, mixed-hybrid finite elements and standard finite difference approximations for the determination of velocities in waterflow problems. Adv. Water Resources 14 (1991) 329–348. [CrossRef] [Google Scholar]
  7. P.G. Ciarlet, The finite element method for elliptic problems error analysis. North Holland, Amsterdam (1978). [Google Scholar]
  8. R.E. Ewing, J. Wang and S.L. Weekes, On the simulation of multicomponent gas flow in porous media. Appl. Numer. Math. 31 (1999) 405–427. [CrossRef] [MathSciNet] [Google Scholar]
  9. P. Grisvard, Elliptic problems on non-smooth domains. Pitman, Boston (1985). [Google Scholar]
  10. F. Maubeuge, M. Didek, E. Arquis, O. Bertrand and J.-P. Caltagirone, Mother: A model for interpreting thermometrics. SPE 28588 (1994). [Google Scholar]
  11. D.Y. Peng and D.B. Robinson, A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15 (1976) 59–64. [CrossRef] [Google Scholar]
  12. J.E. Roberts and J.-M. Thomas, Mixed and Hybrid Methods, in Handbook of Numerical Analysis Vol. II. North Holland, Amsterdam (1991) 523–639. [Google Scholar]
  13. R. Verfürth and D. Braess, A posteriori error estimator for the Raviart-Thomas element. SIAM J. Numer. Anal. 33 (1996) 2431–2444. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you