Free Access
Issue
ESAIM: M2AN
Volume 39, Number 2, March-April 2005
Page(s) 319 - 348
DOI https://doi.org/10.1051/m2an:2005009
Published online 15 April 2005
  1. Y. Achdou, C. Bernardi and F. Coquel, A priori and a posteriori error analysis of finite volume discretizations of Darcy's equations. Numer. Math. 96 (2003) 17–42. [CrossRef] [MathSciNet] [Google Scholar]
  2. G. Acosta and R.G. Durán, The maximum angle condition for mixed and non-conforming elements, Application to the Stokes equations. SIAM J. Numer. Anal. 37 (1999) 18–36. [CrossRef] [MathSciNet] [Google Scholar]
  3. T. Apel, Anisotropic finite elements: Local estimates and applications. Adv. Numer. Math. Teubner, Stuttgart (1999). [Google Scholar]
  4. T. Apel and S. Nicaise, The inf-sup condition for some low order elements on anisotropic meshes. Calcolo 41 (2004) 89–113. [CrossRef] [MathSciNet] [Google Scholar]
  5. T. Apel, S. Nicaise and J. Schröberl, A non-conforming finite element method with anisotropic mesh grading for the stokes problem in domains with edges. IMA J. Numer. Anal. 21 (2001) 843–856. [CrossRef] [MathSciNet] [Google Scholar]
  6. A. Bergam, C. Bernardi and Z. Mghazli, A posteriori analysis of the finite element discretization of some parabolic problem. Preprint Laboratoire J.-L. Lions 01045, Université Paris 6 (2001). [Google Scholar]
  7. A. Bergam, C. Bernardi and Z. Mghazli, A posteriori analysis of the finite element discretization of a nonlinear parabolic equation. (2004) (to appear). [Google Scholar]
  8. C. Bernardi and B. Métivet, Indicateurs d'erreur pour l'équation de la chaleur. Rev. Européenne Élém. Finis 9 (2000) 425–438. [Google Scholar]
  9. C. Bernardi and R. Verfürth, A posteriori error analysis of the fully discretized time-dependent Stokes equations. ESAIM: M2AN 38 (2004) 437–455. [CrossRef] [EDP Sciences] [Google Scholar]
  10. P. Brenner, M. Crouzeix and V. Thomée, Single step methods for inhomogeneous linear differential equations in banach space. RAIRO Anal. Numér. 16 (1982) 5–26. [MathSciNet] [Google Scholar]
  11. P. Ciarlet, The finite element method for elliptic problems. North Holland (1996). [Google Scholar]
  12. P. Clément, Approximation by finite element functions using local regularization. RAIRO Anal. Numér. 2 (1975) 77–84. [Google Scholar]
  13. E. Creusé, G. Kunert and S. Nicaise, A posteriori error estimation for the Stokes problem: Anisotropic and isotropic discretizations. Math. Models Methods Appl. Sci. 14 (2004) 1297–1341. [CrossRef] [MathSciNet] [Google Scholar]
  14. E. Dari, R. Durán, C. Padra and V. Vampa, A posteriori error estimators for nonconforming finite element methods. RAIRO Modél. Math. Anal. Numér. 30 (1996) 385–400. [CrossRef] [MathSciNet] [Google Scholar]
  15. V. Girault and P.-A. Raviart, Finite elements methods for Navier-Stokes equations, Theory and Algorithms. Springer Series in Computational Mathematics, Berlin (1986). [Google Scholar]
  16. C. Johnson, Y.-Y. Nie and V. Thomée, An a posteriori error estimate and adaptive timestep control for a backward Euler discretization of a parabolic problem. SIAM J. Numer. Anal. 27 (1990) 277–291. [CrossRef] [MathSciNet] [Google Scholar]
  17. M. Picasso, Adaptive finite elements for a linear parabolic problem. Comput. Methods Appl. Mech. Engrg. 167 (1998) 223–237. [CrossRef] [MathSciNet] [Google Scholar]
  18. M. Picasso, An anisotropic error indicator based on Zienkiewicz-Zhu error estimator: Application to elliptic and parabolic problems. SIAM J. Sci. Comput. 24 (2003) 1328–1355. [CrossRef] [MathSciNet] [Google Scholar]
  19. L.R. Scott and S. Zhang, Finite element interpolation of non-smooth functions satisfying boundary conditions. Math. Comp. 54 (1990) 483–493. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  20. R. Verfürth, A review of a posteriori error estimation and adaptive mesh–refinement techniques. Wiley-Teubner, Chichester, Stuttgart (1996). [Google Scholar]
  21. R. Verfürth, Error estimates for some quasi-interpolation operators. ESAIM: M2AN 33 (1999) 695–713. [CrossRef] [EDP Sciences] [Google Scholar]
  22. R. Verfürth, A posteriori error estimates for finite element discretization of the heat equation. Calcolo 40 (2003) 195–212. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you