Free Access
Volume 39, Number 3, May-June 2005
Special issue on Low Mach Number Flows Conference
Page(s) 441 - 458
Published online 15 June 2005
  1. T. Alazard, Incompressible limit of the nonisentropic Euler equations with the solid wall boundary conditions. Adv. Differential Equations, to appear. [Google Scholar]
  2. G. Alì, Low Mach number flows in time-dependent domains. SIAM J. Appl. Math. 63 (2003) 2020–2041. [CrossRef] [MathSciNet] [Google Scholar]
  3. K. Asano, On the incompressible limit of the compressible euler equation. Japan J. Appl. Math. 4 (1987) 455–488. [CrossRef] [MathSciNet] [Google Scholar]
  4. B.J. Bayly, C.D. Levermore and T. Passot, Density variations in weakly compressible flows. Phys. Fluids A 4 (1992) 945–954. [CrossRef] [MathSciNet] [Google Scholar]
  5. D. Bresch, B. Desjardins, E. Grenier and C.-K. Lin, Low Mach number limit of viscous polytropic flows: formal asymptotics in the periodic case. Stud. Appl. Math. 109 (2002) 125–149. [CrossRef] [MathSciNet] [Google Scholar]
  6. G. Browning and H.-O. Kreiss, Problems with different time scales for nonlinear partial differential equations. SIAM J. Appl. Math. 42 (1982) 704–718. [Google Scholar]
  7. G. Browning, A. Kasahara and H.-O. Kreiss, Initialization of the primitive equations by the bounded derivative method. J. Atmospheric Sci. 37 (1980) 1424–1436. [CrossRef] [MathSciNet] [Google Scholar]
  8. C. Cheverry, Justification de l'optique géométrique non linéaire pour un système de lois de conservation. Duke Math. J. 87 (1997) 213–263. [CrossRef] [MathSciNet] [Google Scholar]
  9. A. Chorin, A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 2 (1967) 12–26. [CrossRef] [Google Scholar]
  10. R. Danchin, Zero Mach number limit for compressible flows with periodic boundary conditions. Amer. J. Math. 124 (2002) 1153–1219. [CrossRef] [MathSciNet] [Google Scholar]
  11. B. Desjardins and E. Grenier, Low Mach number limit of viscous compressible flows in the whole space. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 455 (1999) 2271–2279. [CrossRef] [MathSciNet] [Google Scholar]
  12. B. Desjardins, E. Grenier, P.-L. Lions and N. Masmoudi, Incompressible limit for solutions of the isentropic navier-stokes equations with dirichlet boundary conditions. J. Math. Pures Appl. 78 (1999) 461–471. [CrossRef] [MathSciNet] [Google Scholar]
  13. A. Dutrifoy and T. Hmidi, The incompressible limit of solutions of the two-dimensional compressible Euler system with degenerating initial data. C. R. Math. Acad. Sci. Paris 336 (2003) 471–474. [CrossRef] [MathSciNet] [Google Scholar]
  14. D. Ebin, The motion of slightly compressible fluids viewed as a motion with strong constraining force. Ann. Math. 105 (1977) 141–200. [CrossRef] [Google Scholar]
  15. D. Ebin, Motion of slightly compressible fluids in a bounded domain I. Comm. Pure Appl. Math. 35 (1982) 451–485. [CrossRef] [MathSciNet] [Google Scholar]
  16. I. Gallagher, Asymptotic of the solutions of hyperbolic equations with a skew-symmetric perturbation. J. Differential Equations 150 (1998) 363–384. [Google Scholar]
  17. B. Gustafsson and H. Stoor, Navier-Stokes equations for almost incompressible flow. SIAM J. Numer. Anal. 28 (1991) 1523–1547. [CrossRef] [MathSciNet] [Google Scholar]
  18. T. Hagstrom and J. Lorenz, All-time existence of classical solutions for slightly compressible flows. SIAM J. Math. Anal. 29 (1998) 652–672. [CrossRef] [MathSciNet] [Google Scholar]
  19. T. Hagstrom and J. Lorenz, On the stability of approximate solutions of hyperbolic-parabolic systems and the all-time existence of smooth, slightly compressible flows. Indiana Univ. Math. J. 51 (2002) 1339–1387. [CrossRef] [MathSciNet] [Google Scholar]
  20. D. Hoff, The zero-Mach limit of compressible flows. Comm. Math. Phys. 192 (1998) 543–554. [CrossRef] [MathSciNet] [Google Scholar]
  21. T. Iguchi, The incompressible limit and the initial layer of the compressible Euler equation in Formula . Math. Methods Appl. Sci. 20 (1997) 945–958. [CrossRef] [MathSciNet] [Google Scholar]
  22. H. Isozaki, Singular limits for the compressible Euler equation in an exterior domain. J. Reine Angew. Math. 381 (1987) 1–36. [CrossRef] [MathSciNet] [Google Scholar]
  23. H. Isozaki, Wave operators and the incompressible limit of the compressible Euler equation. Comm. Math. Phys. 110 (1987) 519–524. [CrossRef] [MathSciNet] [Google Scholar]
  24. H. Isozaki, Singular limits for the compressible Euler equation in an exterior domain. II. Bodies in a uniform flow. Osaka J. Math. 26 (1989) 399–410. [MathSciNet] [Google Scholar]
  25. J.-L. Joly, G. Métivier and J. Rauch, Coherent and focusing multidimensional nonlinear geometric optics. Ann. Sci. École Norm. Sup. (4) 28 (1995) 51–113. [Google Scholar]
  26. J.-L. Joly, G. Métivier and J. Rauch, Dense oscillations for the compressible 2-d Euler equations, in Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. XIII (Paris, 1994/1996), Longman, Harlow. Pitman Res. Notes Math. Ser. 391 (1998) 134–166. [Google Scholar]
  27. T. Kato, The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Rational Mech. Anal. 58 (1975) 181–205. [Google Scholar]
  28. S. Klainerman and A. Majda, Singular perturbations of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Comm. Pure Appl. Math. 34 (1981) 481–524. [Google Scholar]
  29. S. Klainerman and A. Majda, Compressible and incompressible fluids. Comm. Pure Appl. Math. 35 (1982) 629–653. [Google Scholar]
  30. R. Klein, Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics. I. One-dimensional flow. J. Comput. Phys. 121 (1995) 213–237. [Google Scholar]
  31. R. Klein, N. Botta, T. Schneider, C.-D. Munz, S. Roller, A. Meister, L. Hoffmann and T. Sonar, Asymptotic adaptive methods for multi-scale problems in fluid mechanics. J. Engrg. Math. 39 (2001) 261–343. [CrossRef] [MathSciNet] [Google Scholar]
  32. H.-O. Kreiss, Problems with different time scales for partial differential equations. Comm. Pure Appl. Math. 33 (1980) 399–439. [CrossRef] [MathSciNet] [Google Scholar]
  33. C.K. Lin, On the incompressible limit of the compressible navier-stokes equations. Comm. Partial Differential Equations 20 (1995) 677–707. [CrossRef] [MathSciNet] [Google Scholar]
  34. P.-L. Lions, Mathematical topics in fluid mechanics, Vol. 1, Oxford Lecture Series in Mathematics and its Applications. The Clarendon Press Oxford University Press, New York 3 (1996). [Google Scholar]
  35. P.-L. Lions and N. Masmoudi, Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. 77 (1998) 585–627. [CrossRef] [MathSciNet] [Google Scholar]
  36. P.-L. Lions and N. Masmoudi, Une approche locale de la limite incompressible. C. R. Acad. Sci. Paris Sér. I Math. 329 (1999) 387–392. [Google Scholar]
  37. A. Meister, Asymptotic single and multiple scale expansions in the low Mach number limit. SIAM J. Appl. Math. 60 (2000) 256–271. [Google Scholar]
  38. G. Métivier and S. Schochet, The incompressible limit of the non-isentropic euler equations. Arch. Rational Mech. Anal. 158 (2001) 61–90. [CrossRef] [Google Scholar]
  39. G. Métivier and S. Schochet, Averaging theorems for conservative systems and the weakly compressible Euler equations. J. Differential Equations 187 (2003) 106–183. [CrossRef] [MathSciNet] [Google Scholar]
  40. B. Müller, Low-Mach-number asymptotics of the Navier-Stokes equations. J. Engrg. Math. 34 (1998) 97–109. [Google Scholar]
  41. M. Schiffer, Analytical theory of subsonic and supersonic flows, in Handbuch der Physik. Springer-Verlag, Berlin 9 (1960) 1–161. [Google Scholar]
  42. S. Schochet, The compressible Euler equations in a bounded domain: existence of solutions and the incompressible limit. Comm. Math. Phys. 104 (1986) 49–75. [Google Scholar]
  43. S. Schochet, Asymptotics for symmetric hyperbolic systems with a large parameter. J. Differential Equations 75 (1988) 1–27. [CrossRef] [MathSciNet] [Google Scholar]
  44. S. Schochet, Fast singular limits of hyperbolic PDEs. J. Differential Equations 114 (1994) 476–512. [Google Scholar]
  45. P. Secchi, On the singular incompressible limit of inviscid compressible fluids. J. Math. Fluid Mech. 2 (2000) 107–125. [CrossRef] [MathSciNet] [Google Scholar]
  46. T. Sideris, The lifespan of smooth solutions to the three-dimensional compressible Euler equations and the incompressible limit. Indiana Univ. Math J. 40 (1991) 535–550. [CrossRef] [MathSciNet] [Google Scholar]
  47. L. Sirovich, Initial and boundary value problems in dissipative gas dynamics. Phys. Fluids 10 (1967) 24–34. [CrossRef] [MathSciNet] [Google Scholar]
  48. R. Temam, Navier-Stokes equations. Theory and numerical analysis. North-Holland Publishing Co., Amsterdam (1977). [Google Scholar]
  49. S. Ukai, The incompressible limit and initial layer of the compressible Euler equation. J. Math. Kyoto U. 26 (1986) 323–331. [Google Scholar]
  50. P.S. van der Gulik, The linear pressure dependence of the viscosity at high densities. Physica A 256 (1998) 39–56. [CrossRef] [Google Scholar]
  51. M. Van Dyke, Perturbation methods in fluid mechanics. Appl. Math. Mech. 8. Academic Press, New York (1964). [Google Scholar]
  52. G.P. Zank and W.H. Matthaeus, The equations of nearly incompressible fluids. I. Hydrodynamics, turbulence, and waves. Phys. Fluids A 3 (1991) 69–82. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you