Free Access
Issue
ESAIM: M2AN
Volume 39, Number 3, May-June 2005
Special issue on Low Mach Number Flows Conference
Page(s) 459 - 475
DOI https://doi.org/10.1051/m2an:2005019
Published online 15 June 2005
  1. T. Alazard, Work in progress (2004). [Google Scholar]
  2. M. Cannone, Ondelettes, paraproduits et Navier-Stokes. Diderot Ed., Paris (1995). [Google Scholar]
  3. R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations. Invent. Math. 141 (2000) 579–614. [CrossRef] [MathSciNet] [Google Scholar]
  4. R. Danchin, Global existence in critical spaces for flows of compressible viscous and heat-conductive gases. Arch. Rational Mech. Anal. 160 (2001) 1–39. [CrossRef] [Google Scholar]
  5. R. Danchin, Local theory in critical spaces for compressible viscous and heat-conductive gases. Comm. Partial Differential Equations 26 (2001) 1183–1233. [CrossRef] [MathSciNet] [Google Scholar]
  6. R. Danchin, Zero Mach number limit for compressible flows with periodic boundary conditions. Am. J. Math. 124 (2002) 1153–1219. [CrossRef] [MathSciNet] [Google Scholar]
  7. R. Danchin, Zero Mach number limit in critical spaces for compressible Navier-Stokes equations. Ann. Sci. Éc. Norm. Sup. (2002). [Google Scholar]
  8. R. Danchin, On the uniqueness in critical spaces for compressible navier-stokes equations. Nonlinear Differential Equations and Applications, to appear (2002). [Google Scholar]
  9. B. Desjardins and E. Grenier, Low Mach number limit of viscous compressible flows in the whole space. Proc. Roy. Soc. London Ser. A, Math. Phys. Eng. Sci. 455 (1999) 2271–2279. [Google Scholar]
  10. B. Desjardins, E. Grenier, P.-L. Lions and N. Masmoudi, Incompressible limit for solutions of the isentropic Navier-Stokes equations with Dirichlet boundary conditions. J. Math. Pures Appl. (2002). [Google Scholar]
  11. H. Fujita and T. Kato, On the Navier-Stokes initial value problem. I. Arch. Rational Mech. Anal. 16 (1964) 269–315. [CrossRef] [MathSciNet] [Google Scholar]
  12. I. Gallagher, A remark on smooth solutions of the weakly compressible periodic Navier-Stokes equations. J. Math. Kyoto Univ. 40 (2000) 525–540. [MathSciNet] [Google Scholar]
  13. J. Ginibre and G. Velo, Generalized Strichartz inequalities for the wave equation. J. Funct. Anal. 133 (1995) 50–68. [CrossRef] [MathSciNet] [Google Scholar]
  14. T. Hagstrom and J. Lorenz, All-time existence of classical solutions for slightly compressible flows. SIAM J. Math. Anal. 29 (1998) 652–672. [CrossRef] [MathSciNet] [Google Scholar]
  15. D. Hoff, The zero-Mach limit of compressible flows. Comm. Math. Phys. 192 (1998) 543–554. [CrossRef] [MathSciNet] [Google Scholar]
  16. T. Kato, Strong Lp-solutions of the Navier-Stokes equation in Rm, with applications to weak solutions. Math. Z. 187 (1984) 471–480. [CrossRef] [MathSciNet] [Google Scholar]
  17. M. Keel and T. Tao, Endpoint Strichartz estimates. Am. J. Math. 120 (1998) 955–980. [CrossRef] [Google Scholar]
  18. S. Klainerman and A. Majda, Compressible and incompressible fluids. Comm. Pure Appl. Math. 35 (1982) 629–651. [CrossRef] [MathSciNet] [Google Scholar]
  19. H.-O. Kreiss, J. Lorenz and M.J. Naughton, Convergence of the solutions of the compressible to the solutions of the incompressible Navier-Stokes equations. Adv. Appl. Math. 12 (1991) 187–214. [CrossRef] [MathSciNet] [Google Scholar]
  20. P.-L. Lions, Mathematical topics in fluid mechanics. Vol. 1: Incompressible models. Oxford Clarendon Press (1996). [Google Scholar]
  21. P.-L. Lions, Mathematical topics in fluid mechanics. Vol. 2: Compressible models. Oxford Clarendon Press (1998). [Google Scholar]
  22. P.-L. Lions and N. Masmoudi, Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. (9) 77 (1998) 585–627. [CrossRef] [MathSciNet] [Google Scholar]
  23. P.-L. Lions and N. Masmoudi, Une approche locale de la limite incompressible. C. R. Acad. Sci. Paris (1999). [Google Scholar]
  24. N. Masmoudi, Incompressible, inviscid limit of the compressible Navier-Stokes system. Ann. Inst. H. Poincaré Anal. Non Linéaire (2001). [Google Scholar]
  25. A. Matsumura and T. Nishida, The initial value problem for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20 (1980) 67–104. [MathSciNet] [Google Scholar]
  26. G. Métivier and S. Schochet, The incompressible limit of the non-isentropic Euler equations. Arch. Rational Mech. Anal. 158 (2001) 61–90. [CrossRef] [Google Scholar]
  27. G. Métivier and S. Schochet, Averaging theorems for conservative systems and the weakly compressible Euler equations. J. Differential Equations 187 (2003) 106–183. [CrossRef] [MathSciNet] [Google Scholar]
  28. S. Schochet, Fast singular limits of hyperbolic PDEs. J. Differential Equations 114 (1994) 476–512. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  29. S. Ukai, The incompressible limit and the initial layer of the compressible Euler equation. J. Math. Kyoto Univ. 26 (1986) 323–331. [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you