Free Access
Volume 39, Number 3, May-June 2005
Special issue on Low Mach Number Flows Conference
Page(s) 487 - 514
Published online 15 June 2005
  1. R. Abgrall, R. Saurel, A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150 425–467 (1999).
  2. G. Allaire, S. Clerc and S. Kokh, A five-equation model for the numerical simulation of interfaces in two-phase flows. C. R. Acad. Sci. Paris Ser. I 331 (2000) 1017–1022.
  3. G. Allaire, S. Clerc and S. Kokh, A five-equation model for the simulation of interfaces between compressible fluids. J. Comput. Phys. 181 (2002) 577–616. [CrossRef] [MathSciNet]
  4. Y.-H. Choi, C.L. Merkle, The Application of Preconditioning in Viscous Flows. J. Comput. Phys. 105 (1993) 207–223. [CrossRef] [MathSciNet]
  5. A.J. Chorin and J.E. Mardsen, A Mathematical Introduction to Fluid Mechanics. Springer-Verlag (1979).
  6. S. Dellacherie, On relaxation schemes for the multicomponent Euler system. ESAIM: M2AN 37 (2003) 909–936. [CrossRef] [EDP Sciences]
  7. S. Dellacherie, Dérivation du système diphasique bas Mach. Simulation numérique en géométrie monodimensionnelle. CEA report, ref. CEA-R-6046 (2004).
  8. S. Dellacherie and A. Vincent, Zero Mach Number Diphasic Equations for the Simulation of Water-Vapor High Pressure Flows, in Proc. of the 11th conference of the CFD Society of Canada, Vancouver (2003) 248–255.
  9. P. Embid, Well-posedness of the nonlinear equations for zero Mach number combustion. Comm. Partial Differential Equations 12 (1987) 1227–1283. [CrossRef] [MathSciNet]
  10. D. Gueyffier, J. Li, A. Nadim, R. Scardovelli and S. Zaleski, Volume-of-Fluid interface tracking with smoothed surface stress methods for three-dimensional flows. J. Comput. Phys. 152 (1999) 423–456. [CrossRef]
  11. H. Guillard and A. Murrone, On the behavior of upwind schemes in the low Mach number limit: II. Godunov type schemes. Comput. Fluids 33 (2004) 655–675. [CrossRef]
  12. H. Guillard and C. Viozat, On the behaviour of upwind schemes in the low Mach number limit. Comput. Fluids 28 (1999) 63–86. [CrossRef] [MathSciNet]
  13. F.H. Harlow and J.E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free interface. Phys. Fluids 8 (1965) 2182–2189. [NASA ADS] [CrossRef]
  14. D. Jamet, O. Lebaigue, N. Coutris and J.M. Delhaye, The second gradient method for the direct numerical simulation of liquid-vapor flows with phase change. J. Comput. Phys. 169 (2001) 624–651. [CrossRef] [MathSciNet]
  15. D. Juric and G. Tryggvason, Computations of boiling flows. Int. J. Multiphase Flow 24 (1998) 387–410. [CrossRef]
  16. S. Kokh, Aspects numériques et théoriques de la modélisation des écoulements diphasiques compressibles par des méthodes de capture d'interface. Ph.D. thesis of Paris VI University (2001).
  17. B. Lafaurie, C. Nardone, R. Scardovelli, S. Zaleski and G. Zanetti, Modelling merging and fragmentation in multiphase flows with SURFER. J. Comput. Phys. 113 (1994) 134–147. [CrossRef] [MathSciNet]
  18. F. Lagoutière, Modélisation mathématique et résolution numérique de problèmes de fluides compressibles à plusieurs constituants. Ph.D. thesis of Paris VI University (2000).
  19. D. Lakehal, M. Meier and M. Fulgosi, Interface tracking towards the direct numerical simulation of heat and mass transfer in multiphase flow. Internat. J. Heat Fluid Flow 23 (2002) 242–257. [CrossRef]
  20. J.M. Le Corre, E. Hervieu, M. Ishii and J.M. Delhaye, Benchmarking and improvements of measurement techniques for local time-averaged two-phase flow parameters. Fourth International Conference on Multiphase Flows (ICMF 2001), New-Orleans, USA (2001).
  21. A. Majda, Equations for low mach number combustion. Center of Pure and Applied Mathematics, University of California at Berkeley, report No. 112 (1982).
  22. A. Majda and J.A. Sethian, The derivation and numerical solution of the equations for zero Mach number combustion. Combust. Sci. Tech. 42 (1985) 185–205. [CrossRef]
  23. W. Mulder, S. Osher and J.A. Sethian, Computing interface motion in compressible gas dynamics. J. Comput. Phys. 100 (1992) 209–228. [NASA ADS] [CrossRef] [MathSciNet]
  24. S. Osher, M. Sussman and P. Smereka, A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114 (1994) 146–159. [NASA ADS] [CrossRef]
  25. S. Paolucci, On the filtering of sound from the Navier-Stokes equations. Sandia National Laboratories report SAND82-8257 (1982).
  26. J.A. Sethian, Level Set Methods. Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press (1996).
  27. K.M. Shyue, A fluid-mixture type algorithm for compressible multicomponent flow with van der Waals equation of state. J. Comput. Phys. 156 (1999) 43–88. [CrossRef] [MathSciNet]
  28. G. Tryggvasson and S.O. Unverdi, A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys. 100 (1992) 25–37. [CrossRef]
  29. E. Turkel, Review of preconditioning methods for fluid dynamics. Appl. Numer. Math. 12 (1993) 257–284. [CrossRef] [MathSciNet]
  30. S.W.J. Welch and J. Wilson, A volume of fluid based method for fluid flows with phase change. J. Comput. Phys. 160 (2000) 662–682. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you