Free Access
Volume 39, Number 3, May-June 2005
Special issue on Low Mach Number Flows Conference
Page(s) 487 - 514
Published online 15 June 2005
  1. R. Abgrall, R. Saurel, A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150 425–467 (1999). [Google Scholar]
  2. G. Allaire, S. Clerc and S. Kokh, A five-equation model for the numerical simulation of interfaces in two-phase flows. C. R. Acad. Sci. Paris Ser. I 331 (2000) 1017–1022. [Google Scholar]
  3. G. Allaire, S. Clerc and S. Kokh, A five-equation model for the simulation of interfaces between compressible fluids. J. Comput. Phys. 181 (2002) 577–616. [CrossRef] [MathSciNet] [Google Scholar]
  4. Y.-H. Choi, C.L. Merkle, The Application of Preconditioning in Viscous Flows. J. Comput. Phys. 105 (1993) 207–223. [CrossRef] [MathSciNet] [Google Scholar]
  5. A.J. Chorin and J.E. Mardsen, A Mathematical Introduction to Fluid Mechanics. Springer-Verlag (1979). [Google Scholar]
  6. S. Dellacherie, On relaxation schemes for the multicomponent Euler system. ESAIM: M2AN 37 (2003) 909–936. [CrossRef] [EDP Sciences] [Google Scholar]
  7. S. Dellacherie, Dérivation du système diphasique bas Mach. Simulation numérique en géométrie monodimensionnelle. CEA report, ref. CEA-R-6046 (2004). [Google Scholar]
  8. S. Dellacherie and A. Vincent, Zero Mach Number Diphasic Equations for the Simulation of Water-Vapor High Pressure Flows, in Proc. of the 11th conference of the CFD Society of Canada, Vancouver (2003) 248–255. [Google Scholar]
  9. P. Embid, Well-posedness of the nonlinear equations for zero Mach number combustion. Comm. Partial Differential Equations 12 (1987) 1227–1283. [CrossRef] [MathSciNet] [Google Scholar]
  10. D. Gueyffier, J. Li, A. Nadim, R. Scardovelli and S. Zaleski, Volume-of-Fluid interface tracking with smoothed surface stress methods for three-dimensional flows. J. Comput. Phys. 152 (1999) 423–456. [Google Scholar]
  11. H. Guillard and A. Murrone, On the behavior of upwind schemes in the low Mach number limit: II. Godunov type schemes. Comput. Fluids 33 (2004) 655–675. [CrossRef] [Google Scholar]
  12. H. Guillard and C. Viozat, On the behaviour of upwind schemes in the low Mach number limit. Comput. Fluids 28 (1999) 63–86. [CrossRef] [MathSciNet] [Google Scholar]
  13. F.H. Harlow and J.E. Welch, Numerical calculation of time-dependent viscous incompressible flow of fluid with free interface. Phys. Fluids 8 (1965) 2182–2189. [Google Scholar]
  14. D. Jamet, O. Lebaigue, N. Coutris and J.M. Delhaye, The second gradient method for the direct numerical simulation of liquid-vapor flows with phase change. J. Comput. Phys. 169 (2001) 624–651. [CrossRef] [MathSciNet] [Google Scholar]
  15. D. Juric and G. Tryggvason, Computations of boiling flows. Int. J. Multiphase Flow 24 (1998) 387–410. [CrossRef] [Google Scholar]
  16. S. Kokh, Aspects numériques et théoriques de la modélisation des écoulements diphasiques compressibles par des méthodes de capture d'interface. Ph.D. thesis of Paris VI University (2001). [Google Scholar]
  17. B. Lafaurie, C. Nardone, R. Scardovelli, S. Zaleski and G. Zanetti, Modelling merging and fragmentation in multiphase flows with SURFER. J. Comput. Phys. 113 (1994) 134–147. [Google Scholar]
  18. F. Lagoutière, Modélisation mathématique et résolution numérique de problèmes de fluides compressibles à plusieurs constituants. Ph.D. thesis of Paris VI University (2000). [Google Scholar]
  19. D. Lakehal, M. Meier and M. Fulgosi, Interface tracking towards the direct numerical simulation of heat and mass transfer in multiphase flow. Internat. J. Heat Fluid Flow 23 (2002) 242–257. [CrossRef] [Google Scholar]
  20. J.M. Le Corre, E. Hervieu, M. Ishii and J.M. Delhaye, Benchmarking and improvements of measurement techniques for local time-averaged two-phase flow parameters. Fourth International Conference on Multiphase Flows (ICMF 2001), New-Orleans, USA (2001). [Google Scholar]
  21. A. Majda, Equations for low mach number combustion. Center of Pure and Applied Mathematics, University of California at Berkeley, report No. 112 (1982). [Google Scholar]
  22. A. Majda and J.A. Sethian, The derivation and numerical solution of the equations for zero Mach number combustion. Combust. Sci. Tech. 42 (1985) 185–205. [Google Scholar]
  23. W. Mulder, S. Osher and J.A. Sethian, Computing interface motion in compressible gas dynamics. J. Comput. Phys. 100 (1992) 209–228. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  24. S. Osher, M. Sussman and P. Smereka, A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114 (1994) 146–159. [Google Scholar]
  25. S. Paolucci, On the filtering of sound from the Navier-Stokes equations. Sandia National Laboratories report SAND82-8257 (1982). [Google Scholar]
  26. J.A. Sethian, Level Set Methods. Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press (1996). [Google Scholar]
  27. K.M. Shyue, A fluid-mixture type algorithm for compressible multicomponent flow with van der Waals equation of state. J. Comput. Phys. 156 (1999) 43–88. [CrossRef] [MathSciNet] [Google Scholar]
  28. G. Tryggvasson and S.O. Unverdi, A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys. 100 (1992) 25–37. [CrossRef] [Google Scholar]
  29. E. Turkel, Review of preconditioning methods for fluid dynamics. Appl. Numer. Math. 12 (1993) 257–284. [CrossRef] [MathSciNet] [Google Scholar]
  30. S.W.J. Welch and J. Wilson, A volume of fluid based method for fluid flows with phase change. J. Comput. Phys. 160 (2000) 662–682. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you