Free Access
Issue |
ESAIM: M2AN
Volume 39, Number 3, May-June 2005
Special issue on Low Mach Number Flows Conference
|
|
---|---|---|
Page(s) | 537 - 559 | |
DOI | https://doi.org/10.1051/m2an:2005022 | |
Published online | 15 June 2005 |
- P.R. Bannon, On the anelastic approximation for a compressible atmosphere. J. Atmosphere Sci. 53 (1996) 3618–3628. [CrossRef] [Google Scholar]
- G.K. Batchelor, The conditions for dynamical similarity of motions of a frictionless perfect gas atmosphere. Quart. J. Roy. Meteorol. Soc. 79 (1953) 224–235. [CrossRef] [Google Scholar]
- J.R. Biello and A.J. Majda, A new multiscale model for the madden julian oscillation. J. Atmosphere Sci. 62 (2005) in press. [Google Scholar]
- N. Botta, R. Klein and A. Almgren, Asymptotic analysis of a dry atmosphere. ENUMATH, Jyväskylä, Finland (1999). [Google Scholar]
- C. Bretherton and A. Sobel. The gill model and the weak temperature gradient (wtg) approximation. J. Atmosphere Sci. 60 (2003) 451–460. [Google Scholar]
- J.G. Charney, A note on large-scale motions in the tropics. J. Atmosphere Sci. 20 (1963) 607–609. [CrossRef] [Google Scholar]
- S.B. Dorofeev, V.P. Sidorov, A.E. Dvoinishnikov and W. Breitung, Deflagration to detonation transition in large confined volume of lean hydrogen-air mixtures. Combustion & Flame 104 (1996) 95–110. [CrossRef] [Google Scholar]
- D.R. Durran, Improving the anelastic approximation. J. Atmosphere Sci. 46 (1989) 1453–1461. [CrossRef] [Google Scholar]
- A.E. Gill, Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteorol. Soc. 87 (1980) 447–462. [Google Scholar]
- I.M. Held and B.J. Hoskins, Large-scale eddies and the general circulation of the troposphere. Adv. in Geophysics 28 (1985) 3–31. [CrossRef] [Google Scholar]
- J.C.R. Hunt, K.J. Richards and P.W.M. Brighton, Stably stratified shear flow over low hills. Quart. J. Roy. Meteorol. Soc. 114 (1988) 859–886. [CrossRef] [Google Scholar]
- R. Klein, Semi-implicit extension of a godunov-type scheme based on low mach number asymptotics I: One-dimensional flow. J. Comput. Phys. 121 (1995) 213–237. [Google Scholar]
- R. Klein, Asymptotic analyses for atmospheric flows and the construction of asymptotically adaptive numerical methods. ZAMM 80 (2000) 765–777. [CrossRef] [Google Scholar]
- R. Klein, An applied mathematical view of theoretical meteorology, in Applied Mathematics Entering the 21st Century; Invited talks from the ICIAM 2003 Congress, SIAM Proceedings in Applied Mathematics 116 (2004). [Google Scholar]
- R. Klein, Multiple scales asymptotics for atmospheric flows, in Proceedings of the 4th European Conference on Mathematics, Stockholm, Sweden (2004). [Google Scholar]
- R. Klein and S. Vater, Mathematical modelling in climate research. Technical report, Freie Universität, Berlin, Germany (2005). [Google Scholar]
- H. Lamb, Hydrodynamics. Dover Publishers, New York (1981). [Google Scholar]
- F. Lipps and R. Hemler, A scale analysis of deep moist convection and some related numerical calculations. J. Atmosphere Sci. 39 (1982) 2192–2210. [Google Scholar]
- F. Lipps and R. Hemler, Another look at the scale analysis of deep moist convection. J. Atmosphere Sci. 42 (1985) 1960–1964. [CrossRef] [Google Scholar]
- R. Madden and P. Julian, Description of global cell circulation cells in the tropics with a 40-50 day period. J. Atmosphere Sci. 29 (1972) 1109–1123. [CrossRef] [Google Scholar]
- A.J. Majda and J.A. Biello, A multiscale model for tropical intraseasonal oscillations. Proc. Natl. Acad. Sci. USA 101 (2004) 4736–4741. [CrossRef] [MathSciNet] [Google Scholar]
- A. Majda and R. Klein, Systematic multi-scale models for the tropics. J. Atmosphere Sci. 60 (2003) 393–408. [CrossRef] [Google Scholar]
- A. Majda and J. Sethian, The derivation and numerical solution of the equations for zero Mach number combustion. Combust. Sci. Tech. 42 (1985) 185–205. [Google Scholar]
- T. Matsuno, Quasi-geostrophic motions in the equatorial area. J. Meteorol. Soc. Jap. 44 (1966) 25–43. [Google Scholar]
- T.M.J. Newley, H.J. Pearson and J.C.R. Hunt, Stably stratified rotating flow through a group of obstacles. Geophys. Astrophys. Fluid Dynam. 58 (1991) 147–171. [CrossRef] [Google Scholar]
- Y. Ogura and N.A. Phillips, Scale analysis of deep moist convection and some related numerical calculations. J. Atmosphere Sci. 19 (1962) 173–179. [Google Scholar]
- J. Oliger and A. Sundstroem, Theoretical and practical aspects of some initial boundary value problems in fluid dynamics. NASA STI/Recon Technical Report N 77 25465 (November 1976). [Google Scholar]
- J. Pedlosky, Ed., Geophysical Fluid Dynamics. Springer, Berlin, Heidelberg, New York, 2nd edition (1987). [Google Scholar]
- V. Petoukhov, A. Ganopolski, V. Brovkin, M. Claussen, A. Eliseev, C. Kubatzki and S. Rahmstorf, Climber-2: A climate system model of intermediate complexity. Part I: Model description and performance for the present climate. Climate Dynamics 16 (2000) 1–17. [CrossRef] [Google Scholar]
- A.S. Worlikar and O.M. Knio, Numerical study of oscillatory flow and heat transfer in a loaded thermoacoustic stack. Numer. Heat Transfer 35 (1999) 49–65. [CrossRef] [Google Scholar]
- A.S. Worlikar, O.M. Knio and R. Klein, Numerical simulation of a thermoacoustic refrigerator. II: stratified flow around the stack. J. Comput. Fluids 144 (1998) 299–324. [Google Scholar]
- Th. Schneider, N. Botta, R. Klein and K.J. Geratz, Extension of finite volume compressible flow solvers to multi-dimensional, variable density zero Mach number flow. J. Comput. Phys. 155 (1999) 248–286. [Google Scholar]
- Th. Schneider, R. Klein, E. Besnoin and O. Knio, Computational analysis of a thermoacoustic refrigerator, in Proceedings of the joint EAA/ASA meeting (March 1999). [Google Scholar]
- S. Schochet, The mathematical theory of low mach number flows. ESAIM: M2AN 39 (2005) 441–458. [CrossRef] [EDP Sciences] [Google Scholar]
- V. Smiljanovski, V. Moser and R. Klein, A capturing-tracking hybrid scheme for deflagration discontinuities. J. Combustion Theory Modeling 1 (1997) 183–215. [Google Scholar]
- A.A. Sobel, J. Nilsson and L. Polvani, The weak temperature gradient approximation and balanced tropical moisture waves. J. Atmosphere Sci. 58 (2001) 3650–3665. [CrossRef] [Google Scholar]
- P.J. Webster, Response of the tropical atmosphere to local steady forcing. Monthly Weather Review 100 (1972) 518–541. [CrossRef] [Google Scholar]
- A.A. White, A view of the equations of meteorological dynamics and various approximations, in Large Scale Atmosphere-Ocean Dynamics I: Analytical Methods and Numerical Models. J. Norbury and I. Roulstone, Eds., Cambridge University Press (2002). [Google Scholar]
- G.B. Whitham, Linear and Non Linear Waves. John Wiley (1974). [Google Scholar]
- R.K. Zeytounian, Meteorological Fluid Dynamics. Number m5 in Lecture Notes in Physics. Springer, Heidelberg, Berlin, New York (1991). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.