Free Access
Volume 39, Number 3, May-June 2005
Special issue on Low Mach Number Flows Conference
Page(s) 577 - 590
Published online 15 June 2005
  1. A. Baston, M. Lucchesini, L. Manfriani, L. Polito and G. Lombardi, Evaluation of pressure distributions on an aircraft by two different panel methods and comparison with experimental measurements, in 15th Int. Council of the Aeronautical Sciences Congress, London (1986) 618–628. [Google Scholar]
  2. L. d'Agostino, E. Rapposelli, C. Pascarella and A. Ciucci, A Modified Bubbly Isenthalpic Model for Numerical Simulation of Cavitating Flows, in 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT, USA, July 8–11 (2001). [Google Scholar]
  3. M. Deshpande, J. Feng and C. Merkle, Navier-Stokes analysis of 2-D cavity flows. ASME Cavitation and Multiphase Flow Forum, FED-153 (1993) 149–155. [Google Scholar]
  4. P. Glaister, A Riemann Solver for barotropic flow. J. Comput. Phys. 93 (1991) 477–480. [CrossRef] [MathSciNet] [Google Scholar]
  5. H. Guillard and C. Viozat, On the behaviour of upwind schemes in the low Mach number limit. Comput. Fluids 28 (1999) 63–86. [CrossRef] [MathSciNet] [Google Scholar]
  6. G. Jiang and C. Shu, Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126 (1996) 202–228. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  7. D. Li and C. Merkle, Application of a general structured-unstructured solver to flows of arbitrary fluids, in First International Conference on Computational Fluid Dynamics, Kyoto, Japan, July 10–14 (2000). [Google Scholar]
  8. D. Li, G. Xia and C. Merkle, Analysis of real fluid flows in converging diverging nozzles. AIAA Paper 2003-4132 (2003), submitted. [Google Scholar]
  9. D. Li, S. Venkateswaran, K. Fakhari and C. Merkle, Convergence assessment of general fluid equations on unstructured hybrid grids. AIAA Paper 2001-2557 (2001). [Google Scholar]
  10. S. Pandya, S. Venkateswaran and T. Pulliam, Implementation of preconditioned dual-time procedures in OVERFLOW. AIAA Paper 2003-0072 (2003). [Google Scholar]
  11. E. Rapposelli, A. Cervone, C. Bramanti and L. d'Agostino, Thermal cavitation experiments on a NACA 0015 hydrofoil, in Proc. of FEDSM'03 4th ASME/JSME Joint Fluids Engineering conference, Honolulu, Hawaii, USA, July 6–11 (2003). [Google Scholar]
  12. P.L. Roe, Approximate Riemann solvers, parameters vectors, and difference schemes. J. Comput. Phys. 43 (1981) 357–372. [Google Scholar]
  13. E. Sinibaldi, F. Beux and M.V. Salvetti, A preconditioned implicit Roe's scheme for barotropic flows: towards simulation of cavitation phenomena. INRIA research report No. 4891 (2003). [Google Scholar]
  14. E. Sinibaldi, F. Beux and M.V. Salvetti, A preconditioned compressible flow solver for numerical simulation of 3D cavitation phenomena, ECCOMAS 2004, 4th European Congress on Computational Methods in Applied Sciences and Engineering, Jyväskylä, Finland, July 24–28 (2004). [Google Scholar]
  15. E. Turkel, Preconditioned methods for solving the incompressible and low speed compressible equations. J. Comput. Phys. 72 (1987) 277–298. [CrossRef] [Google Scholar]
  16. S. Venkateswaran and C. Merkle, Analysis of preconditioning methods for Euler and Navier-Stokes equations. Formula VKI computational fluid dynamics lecture series (1999). [Google Scholar]
  17. S. Venkateswaran, D. Li and C. Merkle, Influence of stagnation regions on preconditined solutions at low speeds. AIAA Paper 2003-0435 (2003). [Google Scholar]
  18. D.C. Wilcox, Turbulence Modeling for CFD. DCW Industries, Inc., ISBN 0-9636051-5-1 (1998). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you