Free Access
Volume 39, Number 3, May-June 2005
Special issue on Low Mach Number Flows Conference
Page(s) 591 - 607
Published online 15 June 2005
  1. T. Barberon, P. Helluy and S. Rouy, Practical computation of axisymmetrical multifluid flows. Internat. J. Finite Volumes 1 (2003) 1–34. [Google Scholar]
  2. B. Biausser, S.T. Grilli and P. Fraunié, Numerical Simulations of Three-dimensional Wave Breaking by Coupling of a VOF Method and A Boundary Element Method, in Proc. 13th Offshore and Polar Engrg. Conf., ISOPE03, Honolulu, USA (May 2003) 333–339. [Google Scholar]
  3. B. Biausser, S. Guignard, R. Marcer and P. Fraunié, 3D two phase flows numerical simulations by SL-VOF method. Internat. J. Numer. Methods Fluids 45 (2004) 581–604. [CrossRef] [MathSciNet] [Google Scholar]
  4. J.U. Brackbill, B.D. Kothe and C. Zemach, A continuum method for modeling surface tension. J. Comput. Phys. 100 (1992) 335–354. [CrossRef] [MathSciNet] [Google Scholar]
  5. C. De Jouëtte, H. Viviand, S. Wormon and J.M. Le Gouez, Pseudo compressibility method for incompressible flow calculation, in 4th Int. Symposium on computational Fluid Dynamics, Davis, California, 9–12 September (1991). [Google Scholar]
  6. A. Dervieux, Résolution de problèmes à frontière libre. Thesis, Paris VI (1981). [Google Scholar]
  7. T. Gallouët, J.-M. Hérard and N. Seguin, Some approximate godunov schemes to compute shallow-water equations with topography. Comput. Fluids 32 (2003) 479–513. [CrossRef] [MathSciNet] [Google Scholar]
  8. S.T. Grilli, Fully Nonlinear Potential Flow Models used for Long Wave Runup Prediction, in Long-Wave Runup Models, H. Yeh, P. Liu and C. Synolakis Eds., World Scientific Pub (1997) 116–180. [Google Scholar]
  9. S.T. Grilli and R. Subramanya, Numerical modeling of wave breaking induced by fixed or moving boundaries. Comput. Mech. 17 (1996) 374–391. [CrossRef] [MathSciNet] [Google Scholar]
  10. S.T. Grilli and I.A. Svendsen, Corner problems and global accuracy in the boundary element solution of nonlinear wave flows. Engrg. Analysis Boundary Elements 7 (1990) 178–195. [Google Scholar]
  11. S.T. Grilli, P. Guyenne and F. Dias, A fully nonlinear model for three-dimensional overturning waves over arbitrary bottom, Internat. J. Numer. Methods Fluids 35 (2001) 829–867. [Google Scholar]
  12. S.T. Grilli, M.A. Losada and F. Martin, The Breaking of a Solitary Wave over a Step: Modeling and Experiments, in Proc. 4th Intl. Conf. on Hydraulic Engineering Software (HYDROSOFT92, Valencia, Spain, July 92), W.R. Blain and E. Cabrera Eds., Elsevier, Applied Science, Fluid Flow Modelling, Computational Mechanics Publications 1992575-586 (1992). [Google Scholar]
  13. S.T. Grilli, M.A. Losada and F. Martin, Characteristics of solitary wave breaking induced by breakwaters, J. Waterway Port Coastal Ocean Engrg. 120 (1994) 74–92. [Google Scholar]
  14. S.T. Grilli, J. Skourup and I.A. Svendsen, An Efficient Boundary Element Method for Nonlinear Water Waves. Engrg. Analysis Boundary Elements 6 (1989) 97–107. [CrossRef] [Google Scholar]
  15. S.T. Grilli, I.A. Svendsen and R. Subramanya, Breaking criterion and characteristics for solitary waves on slopes. J. Waterway Port Coastal Ocean Engrg. 123 (1997) 102–112. [CrossRef] [Google Scholar]
  16. S.T. Grilli, I.A. Svendsen and R. Subramanya, Closure of: Breaking criterion and characteristics for solitary waves on slopes. J. Waterway Port Coastal Ocean Engrg. 124 (1997) 333–335. [CrossRef] [Google Scholar]
  17. S.T. Grilli, R. Subramanya, I.A. Svendsen and J. Veeramony, Shoaling of solitary waves on plane beaches. J. Waterway Port Coastal Ocean Engrg. 120 (1994) 609–628. [CrossRef] [Google Scholar]
  18. S. Guignard, S.T. Grilli, R. Marcer and V. Rey, Computation of Shoaling and Breaking Waves in Nearshore Areas by the Coupling of BEM and VOF Methods, in Proc. 9th Offshore and Polar Engng. Conf., ISOPE99, Brest, France 3 (May 1999) 304–309. [Google Scholar]
  19. S. Guignard, R. Marcer, V. Rey, C. Kharif and P. Fraunié, Solitary wave breaking on sloping beaches: 2D two phase flow numerical simulation by SL-VOF method. Eur. J. Mech. B Fluids 20 (2001) 57–74. [CrossRef] [MathSciNet] [Google Scholar]
  20. H. Guillard and C. Viozat, On the behavior of upwind schemes in the low Mach number limit. Comput. Fluids 28 (1999) 63–86. [CrossRef] [MathSciNet] [Google Scholar]
  21. C.W. Hirt and B.D. Nichols, Volume of fluid method for the dynamics of free boundaries. J. Comput. Phys. 39 (1981) 323–345. [Google Scholar]
  22. C. Lachaume, B. Biausser, S.T. Grilli, P. Fraunié and S. Guignard, Modeling of Breaking and Post-breaking Waves on Slopes by Coupling of BEM and VOF methods, in Proc. 13th Offshore and Polar Engng. Conf., ISOPE03, Honolulu, USA (May 2003) 353–359. [Google Scholar]
  23. J. Li, Piecewise linear interface calculation. Technical report, Fascicule B-Mecanique, C. R. Acad. Sci. Paris Ser. II. (1995). [Google Scholar]
  24. P. Lubin, S. Vincent, J. Caltagirone and S. Abadie, Fully three-dimensional numerical simulation of a plunging breaker. C. R. Mécanique 331 (2003) 495–501. [CrossRef] [Google Scholar]
  25. P. Lubin, S. Vincent, J. Caltagirone and S. Abadie, Large eddy simulation of vortices induced by plunging breaking waves, in Proc. ISOPE 2004, 14th Intl. Offshore and Polar Enginering Conference and Exhibition 3 (2004) 306–312. [Google Scholar]
  26. S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces. Springer-Verlag, New York (2002). [Google Scholar]
  27. P. Sagaut, Large eddy simulation for incompressible flows. Springer-Verlag, New York (1998). [Google Scholar]
  28. R. Saurel and R. Abgrall, A simple method for compressible multifluid flows. SIAM J. Sci. Comput. 21 (1999) 1115–1145. [CrossRef] [MathSciNet] [Google Scholar]
  29. J.A. Sethian, Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision and Materials Sciences. Cambridge University Press (1996). [Google Scholar]
  30. M. Tanaka, The stability of solitary waves. Phys. Fluids 29 (1986) 650–655. [CrossRef] [MathSciNet] [Google Scholar]
  31. E. Turkel, Preconditioned methods for solving the incompressible and low speed compressible equations. J. Comput. Phys. 72 (1987) 277–298. [CrossRef] [Google Scholar]
  32. E. Turkel, Review of preconditioning methods for fluid dynamics. Appl. Numer. Math. 12 (1993) 257–284. [CrossRef] [MathSciNet] [Google Scholar]
  33. S. Vincent, Modélisation d'écoulements incompressibles de fluides non-miscibles. Université Bordeaux I (1999). [Google Scholar]
  34. S. Vincent and J.P. Caltagirone, Efficient solving method for unsteady incompressible interfacial flow problems. Internat. J. Numer. Methods Fluids 30 (1999) 795–811. [Google Scholar]
  35. S. Vincent and J.P. Caltagirone, A one cell local multigrid method for solving unsteady incompressible multi-phase flows. J. Comput. Phys. 163 (2000) 172–215. [CrossRef] [MathSciNet] [Google Scholar]
  36. S. Vincent, J.P. Caltagirone, P. Lubin and T.N. Randrianarivelo, an adaptative augmented Lagrangian method for three-dimensional multi-material flows. Comput. Fluids (2004), under press. [Google Scholar]
  37. H. Viviand, Pseudo-unsteady methods for transonic flow computations, in 19th Int. Conf. on Numerical Methods in Fluid Dynamics, Stanford, Springer-Verlag, New-York 141 (1980). [Google Scholar]
  38. H. Viviand, Analysis of pseudo-compressibility systems for compressible and incompressible flows. Technical report, Comput. Fluids Dynamics Rev. (1995). [Google Scholar]
  39. T. Yasuda, H. Mutsuda and N. Mizutani, Kinematic of overtuning solitary waves and their relations to breaker types. Coastal Engrg. 29 (1997) 317–346. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you