Free Access
Issue
ESAIM: M2AN
Volume 39, Number 4, July-August 2005
Page(s) 715 - 726
DOI https://doi.org/10.1051/m2an:2005031
Published online 15 August 2005
  1. C. Carstensen, Interface problem in holonomic elastoplasticity. Math. Methods Appl. Sci. 16 (1993) 819–835. [CrossRef] [MathSciNet] [Google Scholar]
  2. C. Carstensen and J. Gwinner, FEM and BEM coupling for a nonlinear transmission problem with Signorini contact. SIAM J. Numer. Anal. 34 (1997) 1845–1864. [CrossRef] [MathSciNet] [Google Scholar]
  3. C. Carstensen, M. Kuhn and U. Langer, Fast parallel solvers for symmetric boundary element domain decomposition equations. Numer. Math. 79 (1998) 321–347. [CrossRef] [MathSciNet] [Google Scholar]
  4. M. Costabel and E. Stephan, Coupling of finite and boundary element methods for an elastoplastic interface problem. SIAM J. Numer. Anal. 27 (1990) 1212–1226. [CrossRef] [MathSciNet] [Google Scholar]
  5. G. Gatica and G. Hsiao, On the coupled BEM and FEM for a nonlinear exterior Dirichlet problem in R2. Numer. Math. 61(1992) 171–214. [Google Scholar]
  6. R. Glowinski, Numerical methods for nonlinear variational problems. Springer-Verlag, New York (1984). [Google Scholar]
  7. R. Glowinski, G. Golub, G. Meurant and J. Periaux, Eds., Proc. of the the First international symposium on domain decomposition methods for PDEs. SIAM Philadelphia (1988). [Google Scholar]
  8. Q. Hu and D. Yu, A solution method for a certain interface problem in unbounded domains. Computing 67 (2001) 119–140. [CrossRef] [MathSciNet] [Google Scholar]
  9. N. Kikuchi and J. Oden, Contact problem in elasticity: a study of variational inequalities and finite element methods. SIAM, Philadelphia (1988). [Google Scholar]
  10. J. Lions and E. Magenes, Non-homogeneous boundary value problems and applications, Vol. I. Springer-Verlag (1972). [Google Scholar]
  11. P. Mund and E. Stephan, An adaptive two-level method for the coupling of nonlinear FEM-BEM equations, SIAM J. Numer. Anal. 36 (1999) 1001–1021. [Google Scholar]
  12. J. Necas, Introduction to the theory of nonlinear elliptic equations. Teubner, Texte 52, Leipzig (1983). [Google Scholar]
  13. E. Polak, Computational methods in optimization. Academic Press, New York (1971). [Google Scholar]
  14. J. Schoberl, Solving the Signorini problem on the basis of domain decomposition techniques. Computing 60 (1998) 323–344. [CrossRef] [MathSciNet] [Google Scholar]
  15. E. Stephan, W. Wendland and G. Hsiao, On the integral equation method for the plane mixed boundary value problem of the Laplacian. Math. Methods Appl. Sci. 1 (1979) 265–321. [CrossRef] [MathSciNet] [Google Scholar]
  16. X. Tai and M. Espedal, Rate of convergence of some space decomposition methods for linear and nonlinear problems. SIAM J. Numer. Anal. 35 (1998) 1558–1570. [CrossRef] [MathSciNet] [Google Scholar]
  17. X. Tai and J. Xu, Global convergence of space correction methods for convex optimization problems. Math. Comp. 71 (2002) 105–122. [CrossRef] [MathSciNet] [Google Scholar]
  18. D. Yu, The relation between the Steklov-Poincare operator, the natural integral operator and Green functions. Chinese J. Numer. Math. Appl. 17 (1995) 95–106. [MathSciNet] [Google Scholar]
  19. D. Yu, Discretization of non-overlapping domain decomposition method for unbounded domains and its convergence.Chinese J. Numer. Math. Appl. 18 (1996) 93–102. [Google Scholar]
  20. D. Yu, Natural Boundary Integral Method and Its Applications. Science Press/Kluwer Academic Publishers, Beijing/New York (2002). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you