Free Access
Issue
ESAIM: M2AN
Volume 39, Number 4, July-August 2005
Page(s) 727 - 753
DOI https://doi.org/10.1051/m2an:2005032
Published online 15 August 2005
  1. M. Ainsworth and J. Coyle, Hierarchic hp-edge element families for Maxwell's equations on hybrid quadrilateral/triangular meshes. Comput. Methods Appl. Mech. Engrg. 190 (2001) 6709–6733. [CrossRef] [MathSciNet] [Google Scholar]
  2. C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains. Math. Models Appl. Sci. 21 (1998) 823–864. [Google Scholar]
  3. D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2001) 1749–1779. [CrossRef] [MathSciNet] [Google Scholar]
  4. D. Boffi and L. Gastaldi, Edge finite elements for the approximation of Maxwell resolvent operator. ESAIM: M2AN 36 (2002) 293–305. [CrossRef] [EDP Sciences] [Google Scholar]
  5. S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, Texts in Applied Mathematics 15, Springer-Verlag, New York (1994). [Google Scholar]
  6. Z. Chen, Q. Du and J. Zou, Finite element methods with matching and nonmatching meshes for Maxwell equations with discontinuous coefficients. SIAM J. Numer. Anal. 37 (2000) 1542–1570. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  7. P.G. Ciarlet, The finite element method for elliptic problems. North–Holland, Amsterdam (1978). [Google Scholar]
  8. L. Demkowicz and L. Vardapetyan, Modeling of electromagnetic absorption/scattering problems using hp–adaptive finite elements. Comput. Methods Appl. Mech. Engrg. 152 (1998) 103–124. [CrossRef] [MathSciNet] [Google Scholar]
  9. P. Fernandes and G. Gilardi, Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Models Methods Appl. Sci. 7 (1997) 957–991. [CrossRef] [MathSciNet] [Google Scholar]
  10. R. Hiptmair, Finite elements in computational electromagnetism. Acta Numerica 11 (2002) 237–339. [CrossRef] [MathSciNet] [Google Scholar]
  11. P. Houston, I. Perugia and D. Schötzau, hp-DGFEM for Maxwell's equations, in Numerical Mathematics and Advanced Applications ENUMATH 2001, F. Brezzi, A. Buffa, S. Corsaro, and A. Murli, Eds., Springer-Verlag (2003) 785–794. [Google Scholar]
  12. P. Houston, I. Perugia and D. Schötzau, Mixed discontinuous Galerkin approximation of the Maxwell operator. SIAM J. Numer. Anal. 42 (2004) 434–459. [CrossRef] [MathSciNet] [Google Scholar]
  13. P. Houston, I. Perugia and D. Schötzau, Mixed discontinuous Galerkin approximation of the Maxwell operator: Non-stabilized formulation. J. Sci. Comput. 22 (2005) 325–356. [Google Scholar]
  14. P. Houston, I. Perugia, A. Schneebeli and D. Schötzau, Interior penalty method for the indefinite time-harmonic Maxwell equations. Numer. Math. 100 (2005) 485–518. [Google Scholar]
  15. O.A. Karakashian and F. Pascal, A posteriori error estimation for a discontinuous Galerkin approximation of second order elliptic problems. SIAM J. Numer. Anal. 41 (2003) 2374–2399. [CrossRef] [MathSciNet] [Google Scholar]
  16. J. L. Lions and E. Magenes, Problèmes aux Limites Non-Homogènes et Applications. Dunod, Paris (1968). [Google Scholar]
  17. P. Monk, A finite element method for approximating the time-harmonic Maxwell equations. Numer. Math. 63 (1992) 243–261. [CrossRef] [MathSciNet] [Google Scholar]
  18. P. Monk, Finite element methods for Maxwell's equations. Oxford University Press, New York (2003). [Google Scholar]
  19. P. Monk, A simple proof of convergence for an edge element discretization of Maxwell's equations, in Computational electromagnetics, C. Carstensen, S. Funken, W. Hackbusch, R. Hoppe and P. Monk, Eds., Springer-Verlag, Lect. Notes Comput. Sci. Engrg. 28 (2003) 127–141. [Google Scholar]
  20. J.C. Nédélec, A new family of mixed finite elements in Formula . Numer. Math. 50 (1986) 57–81. [CrossRef] [MathSciNet] [Google Scholar]
  21. I. Perugia and D. Schötzau, The hp-local discontinuous Galerkin method for low-frequency time-harmonic Maxwell equations. Math. Comput. 72 (2003) 1179–1214. [Google Scholar]
  22. I. Perugia, D. Schötzau and P. Monk, Stabilized interior penalty methods for the time-harmonic Maxwell equations. Comput. Methods Appl. Mech. Engrg. 191 (2002) 4675–4697. [CrossRef] [MathSciNet] [Google Scholar]
  23. A. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comp. 28 (1974) 959–962. [CrossRef] [MathSciNet] [Google Scholar]
  24. L. Vardapetyan and L. Demkowicz, hp-adaptive finite elements in electromagnetics. Comput. Methods Appl. Mech. Engrg. 169 (1999) 331–344. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you