Free Access
Issue
ESAIM: M2AN
Volume 39, Number 5, September-October 2005
Page(s) 883 - 908
DOI https://doi.org/10.1051/m2an:2005039
Published online 15 September 2005
  1. T. Belytschko, Y. Krongauz, D. Organ, M. Fleming and P. Krysl, Meshless methods: an overview and recent developments. Comput. Methods Appl. Mech. Engrg. 139 (1996) 3–47. [Google Scholar]
  2. J.P. Boyd, Chebyshev and Fourier Spectral Methods. Springer Verlag (1989). [Google Scholar]
  3. B. Fornberg, Generation of Finite Difference Formulas on Arbitrarily Spaced Grids. Math. Comp. 51 (1988) 699–706. [CrossRef] [MathSciNet] [Google Scholar]
  4. B. Fornberg, A Practical Guide to Pseudospectral Methods. Cambridge University Press (1996). [Google Scholar]
  5. J. Fürst and Th. Sonar, On meshless collocation approximations of conservation laws: preliminary investigations on positive schemes and dissipation models. ZAMM Z. Angew. Math. Mech. 81 (2001) 403–415. [CrossRef] [MathSciNet] [Google Scholar]
  6. M. Kunle, Entwicklung und Untersuchung von Moving Least Square Verfahren zur numerischen Simulation hydrodynamischer Gleichungen. Doktorarbeit, Fakultät für Physik, Eberhard-Karls-Universität zu Tübingen (2001). [Google Scholar]
  7. P. Lancaster and K. Šalkauskas, Surfaces generated by moving least squares methods. Math. Comp. 37 (1981) 141–158. [Google Scholar]
  8. P. Lancaster and K. Šalkauskas, Curve and Surface Fitting: An Introduction. Academic Press (1986). [Google Scholar]
  9. T. Liszka and J. Orkisz, The finite difference method at arbitrary irregular grids and its application in applied mechanics. Comput. Structures 11 (1980) 83–95. [Google Scholar]
  10. H. Netuzylov, Th. Sonar and W. Yomsatieankul, Finite difference operators from moving least squares interpolation. Manuscript, Institut Computational Mathematics, TU Braunschweig (2004). [Google Scholar]
  11. N. Perrone and R. Kao, A general finite difference method for arbitrary meshes. Comput. Structures 5 (1975) 45–58. [CrossRef] [Google Scholar]
  12. W. Schönauer, Generation of difference and error formulae of arbitrary consistency order on an unstructured grid. ZAMM Z. Angew. Math. Mech. 78 (1998) S1061–S1062. [CrossRef] [Google Scholar]
  13. L. Theilemann, Ein gitterfreies differenzenverfahren. Doktorarbeit, Institut für Aerodynamik und Gasdynamik, Universität Stuttgart (1983). [Google Scholar]
  14. W. Yomsatieankul, Th. Sonar and H. Netuzhylov, Spatial difference operators from moving least squares interpolation. Manuscript, Institut Computational Mathematics, TU Braunschweig (2004). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you