Free Access
Issue
ESAIM: M2AN
Volume 39, Number 5, September-October 2005
Page(s) 863 - 882
DOI https://doi.org/10.1051/m2an:2005038
Published online 15 September 2005
  1. H.W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations. Math. Z. 183 (1983), 311–341. [Google Scholar]
  2. S. Bartels, A posteriori error analysis for Ginzburg-Landau type equations. In preparation (2004). [Google Scholar]
  3. A. Beaulieu, Some remarks on the linearized operator about the radial solution for the Ginzburg-Landau equation. Nonlinear Anal. 54 (2003) 1079–1119. [CrossRef] [MathSciNet] [Google Scholar]
  4. F. Bethuel, H. Brezis and F. Hélein, Ginzburg-Landau vortices. Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc., Boston, MA (1994). [Google Scholar]
  5. S.C. Brenner and L.R. Scott, The mathematical theory of finite element methods. Texts in Applied Mathematics, Springer-Verlag, New York (2002). [Google Scholar]
  6. X. Chen, Spectrum for the Allen-Cahn, Cahn-Hilliard, and phase-field equations for generic interfaces. Comm. Partial Differential Equations 19 (1994) 1371–1395. [CrossRef] [MathSciNet] [Google Scholar]
  7. Z. Chen and K.-H. Hoffmann, Numerical studies of a non-stationary Ginzburg-Landau model for superconductivity. Adv. Math. Sci. Appl. 5 (1995) 363–389. [MathSciNet] [Google Scholar]
  8. X. Chen, C.M. Elliott and T. Qi, Shooting method for vortex solutions of a complex-valued Ginzburg-Landau equation. Proc. Roy. Soc. Edinburgh Sect. A 124 (1994) 1075–1088. [MathSciNet] [Google Scholar]
  9. P. de Mottoni and M. Schatzman, Geometrical evolution of developed interfaces. Trans. Amer. Math. Soc. 347 (1995) 1533–1589. [CrossRef] [MathSciNet] [Google Scholar]
  10. S. Ding and Z. Liu, Hölder convergence of Ginzburg-Landau approximations to the harmonic map heat flow. Nonlinear Anal. 46 (2001) 807–816. [CrossRef] [MathSciNet] [Google Scholar]
  11. Q. Du, M. Gunzburger and J. Peterson, Analysis and approximation of the Ginzburg-Landau model of superconductivity. SIAM Rev. 34 (1992), 54–81 [Google Scholar]
  12. Q. Du, M. Gunzburger and J. Peterson, Finite element approximation of a periodic Ginzburg-Landau model for type-Formula superconductors. Numer. Math. 64 (1993) 85–114. [CrossRef] [MathSciNet] [Google Scholar]
  13. W. E, Dynamics of vortices in Ginzburg-Landau theories with applications to superconductivity. Phys. D 77 (1994) 383–404. [CrossRef] [MathSciNet] [Google Scholar]
  14. L.C. Evans, Partial differential equations. Graduate Studies in Mathematics, American Mathematical Society, Providence, RI (1998). [Google Scholar]
  15. X. Feng and A. Prohl, Numerical analysis of the Cahn-Hilliard equation and approximation of the Hele-Shaw problem. Interfaces Free Bound. 7 (2005) 1–28. [CrossRef] [MathSciNet] [Google Scholar]
  16. X. Feng and A. Prohl, Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows. Numer. Math. 94 (2003) 33–65. [CrossRef] [MathSciNet] [Google Scholar]
  17. X. Feng and A. Prohl, Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits. Math. Comp. 73 (2004) 541-567. [CrossRef] [MathSciNet] [Google Scholar]
  18. V. Ginzburg and L. Landau, On the theory of superconductivity. Zh. Èksper. Teoret. Fiz. 20 (1950) 1064–1082, in Men of Physics, L.D. Landau, D. ter Haar, Eds., Pergamon, Oxford (1965) 138–167. [Google Scholar]
  19. R.-M. Hervé and M. Hervé, Étude qualitative des solutions réelles d'une équation différentielle liée à l'équation de Ginzburg-Landau. Ann. Inst. H. Poincaré Anal. Non Linéaire 11 (1994) 427–440. [Google Scholar]
  20. K.-H. Hoffmann, J. Zou, Finite element approximations of Landau-Ginzburg's equation model for structural phase transitions in shape memory alloys. RAIRO Modél. Math. Anal. Numér. 29 (1995) 629–655. [MathSciNet] [Google Scholar]
  21. A. Jaffe and C. Taubes, Vortices and monopoles. Progress in Physics, Birkhäuser Boston, Inc., Boston, MA (1994). [Google Scholar]
  22. D. Kessler, R.H. Nochetto and A. Schmidt, A posteriori error control for the Allen-Cahn problem: circumventing Gronwall's inequality. Preprint (2003). [Google Scholar]
  23. E.H. Lieb and M. Loss, Symmetry of the Ginzburg-Landau minimizer in a disc. Math. Res. Lett. 1 (1994) 701–715. [MathSciNet] [Google Scholar]
  24. F.H. Lin, Complex Ginzburg-Landau equations and dynamics of vortices, filaments, and codimension-2 submanifolds. Comm. Pure Appl. Math. 51 (1998) 385–441. [CrossRef] [MathSciNet] [Google Scholar]
  25. F.H. Lin, Some dynamical properties of Ginzburg-Landau vortices. Comm. Pure Appl. Math. 49 (1996) 323–359. [CrossRef] [MathSciNet] [Google Scholar]
  26. F.H. Lin, The dynamical law of Ginzburg-Landau vortices. Proc. of the Conference on Nonlinear Evolution Equations and Infinite-dimensional Dynamical Systems (Shanghai, 1995), World Sci. Publishing, River Edge, NJ (1997) 101–110. [Google Scholar]
  27. F.H. Lin and Q. Du, Ginzburg-Landau vortices: dynamics, pinning, and hysteresis. SIAM J. Math. Anal. 28 (1997) 1265–1293. [CrossRef] [MathSciNet] [Google Scholar]
  28. T.C. Lin, The stability of the radial solution to the Ginzburg-Landau equation. Comm. Partial Differential Equations 22 (1997) 619–632. [CrossRef] [MathSciNet] [Google Scholar]
  29. T.C. Lin, Spectrum of the linearized operator for the Ginzburg-Landau equation. Electron. J. Differential Equations 42 (2000), 25 (electronic). [Google Scholar]
  30. P. Mironescu, On the stability of radial solutions of the Ginzburg-Landau equation. J. Funct. Anal. 130 (1995) 334–344. [CrossRef] [MathSciNet] [Google Scholar]
  31. P. Mironescu, Les minimiseurs locaux pour l'équation de Ginzburg-Landau sont à symétrie radiale. C. R. Acad. Sci. Paris Sér. I Math. 323 (1996) 593–598. [Google Scholar]
  32. M. Mu, Y. Deng and C.-C. Chou, Numerical methods for simulating Ginzburg-Landau vortices. SIAM J. Sci. Comput. 19 (1998) 1333–1339. [CrossRef] [MathSciNet] [Google Scholar]
  33. J.C. Neu, Vortices in complex scalar fields. Phys. D 43 (1990) 385–406. [CrossRef] [MathSciNet] [Google Scholar]
  34. F. Pacard and T. Riviere, Linear and nonlinear aspects of vortices. The Ginzburg-Landau model. Progress in Nonlinear Differential Equations and their Applications, Birkhäuser Boston, Inc., Boston, MA (2000). [Google Scholar]
  35. V. Thomée, Galerkin finite element methods for parabolic problems. Springer Series in Computational Mathematics, Springer-Verlag, Berlin (1997). [Google Scholar]
  36. M.F. Wheeler, A priori Formula error estimates for Galerkin approximations to parabolic partial differential equations. SIAM J. Numer. Anal. 10 (1973) 723–759. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you