Free Access
Issue
ESAIM: M2AN
Volume 39, Number 6, November-December 2005
Page(s) 1251 - 1269
DOI https://doi.org/10.1051/m2an:2005046
Published online 15 November 2005
  1. J. Cahouet, On some difficulties occurring in the simulation of incompressible fluid flows by domain decomposition methods, in Proc. of the First International Symposium On Domain Decomposition Methods for Partial Differential Equations, R. Glowinski, G. Golub, G. Meurant and J. Periaux Eds., SIAM, Philadelphia, PA (1988). [Google Scholar]
  2. X.C Cai, D.E. Keyes and V. Venkatakrishnan, Newton-Krylov-Schwarz: An implicit solver for CFD, in Proc. of the Eighth International Conference on Domain Decomposition Methods in Science and Engineering, R. Glowinski, J. Periaux, Z.C. Shi and O.B. Widlund Eds., Wiley, Strasbourg (1997). [Google Scholar]
  3. T.F. Chan and T.P. Mathew, Domain decomposition algorithm. Acta Numerica (1994) 61–143. [Google Scholar]
  4. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). [Google Scholar]
  5. Q.V. Dinh, R. Glowinski, J. Periaux and G. Terrasson, On the coupling of viscous and inviscid models for incompressible fluid flows via domain decomposition, in Proc. the First International Symposium On Domain Decomposition Methods for Partial Differential Equations, R. Glowinski, G. Golub, G. Meurant and J. Periaux Eds., SIAM, Philadelphia, PA (1988). [Google Scholar]
  6. L. Fatone, P. Gervasio and A. Quarteroni, Multimodels for incompressible flows. J. Math. Fluid Dynamics 2 (2000) 126–150. [Google Scholar]
  7. M. Fortin and R. Aboulaich, Schwarz's Decomposition Method for Incompressible Flow Problems, in Proc. of the First International Symposium On Domain Decomposition Methods for Partial Differential Equations, R. Glowinski, G. Golub, G. Meurant and J. Periaux Eds., SIAM, Philadelphia, PA (1988). [Google Scholar]
  8. V. Girault and P.A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Spring-Verlag, Berlin (1986). [Google Scholar]
  9. M. Gunzburger and H.K. Lee, An optimization-based domain decomposition method for the Navier-Stokes equations. SIAM J. Numer. Anal. 37 (2000) 1455–1480. [CrossRef] [MathSciNet] [Google Scholar]
  10. M. Gunzburger and R. Nicolaides, On substructuring algorithms and solution techniques for numerical approximation of partial differential equations. Appl. Numer. Math. 2 (1986) 243–256. [CrossRef] [MathSciNet] [Google Scholar]
  11. P. Le Tallec, Domain decomposition methods in computational mechanics. Comput. Mech. Adv. 1 (1994) 121–220. [MathSciNet] [Google Scholar]
  12. P.L. Lions, On the Schwarz alternating method, in Proc. of the First International Symposium on Domain Decomposition Methods for Partial Differential Equations, R. Glowinski, G.H. Golub, G.A. Meurant and J. Periaux Eds., SIAM, Philadelphia (1988) 1–42. [Google Scholar]
  13. S.H. Lui, On Schwarz alternating methods for nonlinear PDEs. SIAM J. Sci. Comput. 21 (2000) 1506–1523. [CrossRef] [Google Scholar]
  14. S.H. Lui, On Schwarz alternating methods for the incompressible Navier-Stokes equations. SIAM J. Sci. Comput. 22 (2001) 1974–1986. [CrossRef] [Google Scholar]
  15. S.H. Lui, On linear monotone iteration and Schwarz methods for nonlinear elliptic PDEs. Numer. Math. 93 (2002) 109–129. [MathSciNet] [Google Scholar]
  16. L.D. Marini and A. Quarteroni, A relaxation procedure for domain decomposition methods using finite elements. Numer. Math. 55 (1989) 575–598. [CrossRef] [MathSciNet] [Google Scholar]
  17. A. Quarteroni and A. Valli, Domain Decomposition Methods for Partial Differential Equations. Oxford Science Publications (1999). [Google Scholar]
  18. B.F. Smith, P.E. Bjorstad and W.D. Gropp, Domain Decomposition: Parallel Multilevel Algorithms for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge, UK (1996). [Google Scholar]
  19. R. Teman, The Navier-Stokes Equations, Theory and Numerical Analysis. North-Holland, Amsterdam (1977). [Google Scholar]
  20. J. Xu and J. Zou, Some nonoverlapping domain decomposition methods. SIAM Rev. 40 (1998) 867–914. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you