Free Access
Volume 39, Number 6, November-December 2005
Page(s) 1115 - 1147
Published online 15 November 2005
  1. R.A. Adams, Sobolev Spaces. Academic Press, New York (1975). [Google Scholar]
  2. A.S. Almgren, J.B. Bell, P. Colella, L.H. Howell and M.L. Welcome, A conservative adaptive projection method for the variable density incompressible Navier-Stokes equations. Technical Report LNBL-39075, UC-405 (1996). [Google Scholar]
  3. C.E. Baumann and J.T. Oden, A discontinuous hp finite element method for convection-diffusion problems. Comput. Methods Appl. Mech. Engrg. 175 (1999) 311–341. [CrossRef] [MathSciNet] [Google Scholar]
  4. J. Blasco and R. Codina, Error estimates for an operator-splitting method for incompressible flows. Appl. Numer. Math. 51 (2004) 1–17. [CrossRef] [MathSciNet] [Google Scholar]
  5. J. Blasco, R. Codina and A. Huerta, A fractional-step method for the incompressible Navier-Stokes equations related to a predictor-multicorrector algorithm. Int. J. Numer. Meth. Fl. 28 (1997) 1391–1419. [CrossRef] [Google Scholar]
  6. P.G. Ciarlet, The finite element methods for elliptic problems. North-Holland, Amsterdam (1978). [Google Scholar]
  7. A.J. Chorin, Numerical solution of the Navier-Stokes equations. Math. Comp. 22 (1968) 745–762. [Google Scholar]
  8. M. Crouzeix and P.A. Raviart, Conforming and non conforming finite element methods for solving the stationary Stokes equations. RAIRO Anal. Numér. R3 (1973) 33–76. [Google Scholar]
  9. C. Dawson and J .Proft, Discontinuous and coupled continuous/discontinuous Galerkin methods for the shallow water equations. Comput. Methods Appl. Mech. Engrg. 191 (2002) 4721–4746. [CrossRef] [MathSciNet] [Google Scholar]
  10. C. Dawson, S. Sun and M. Wheeler, Compatible algorithms for coupled flow and transport. Comput. Methods Appl. Mech. Engrg. (2003) 2565–2580. [Google Scholar]
  11. E. Fernandez-Cara and M.M. Beltram, The convergence of two numerical schemes for the Navier-Stokes equations. Numer. Math. 55 (1989) 33–60. [CrossRef] [MathSciNet] [Google Scholar]
  12. V. Girault and J.-L. Lions, Two-grid finite-element schemes for the steady Navier-Stokes problem in polyhedra. Portugal. Math. 58 (2001) 25–57. [Google Scholar]
  13. V. Girault and P.A. Raviart, Finite element methods for Navier-Stokes equations. Lecture Notes in Math. 749, Springer-Verlag, Berlin, Heidelberg, New-York (1979). [Google Scholar]
  14. V. Girault, B. Rivière and M.F. Wheeler, A discontinuous Galerkin method with non-overlapping domain decomposition for the Stokes and Navier-Stokes problems. Math. Comp. 74 (2005) 53–84. [Google Scholar]
  15. R. Glowinski, Finite element methods for Incompressible Viscous Flows, in Numerical Methods for Fluids (Part 3), Handbook of Numerical Analysis, 9, Elsevier, North-Holland (2003). [Google Scholar]
  16. P. Grisvard, Elliptic problems in nonsmooth domains, Pitman Monogr. Studies Pure Appl. Math. 24, Pitman, Boston, MA (1985). [Google Scholar]
  17. J.L. Guermond and L. Quartapelle, On the approximation of the unsteady Navier-Stokes equations by finite element projection methods. Numer. Math. 80 (1998) 207–238. [CrossRef] [MathSciNet] [Google Scholar]
  18. J.L. Guermond and J. Shen, Velocity-correction projection methods for incompressible flows. SIAM J. Numer. Anal. 41 (2003) 112–134. [CrossRef] [MathSciNet] [Google Scholar]
  19. J.L. Guermond and J. Shen, A new class of truly consistent splitting schemes for incompressible flows. J. Comput. Phys. 192 (2003) 262–276. [Google Scholar]
  20. S. Kaya and B. Rivière, A discontinuous subgrid eddy viscosity method for the time-dependent Navier-Stokes equations. SIAM J. Numer. Anal. (2005), to appear. [Google Scholar]
  21. P. Lesaint and P.A. Raviart, On a finite element method for solving the neutron transport equation, in Mathematical Aspects of Finite Element Methods in Partial Differential Equations, C.A. de Boor Ed., Academic Press (1974) 89–123. [Google Scholar]
  22. J.-L. Lions and E. Magenes, Problèmes aux Limites non Homogènes et Applications, I. Dunod, Paris (1968). [Google Scholar]
  23. J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969). [Google Scholar]
  24. A. Quarteroni, F. Saleri and A. Veneziani, Factorization methods for the numerical approximation of Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg. 188 (2000) 505–526. [CrossRef] [MathSciNet] [Google Scholar]
  25. R. Rannacher, On Chorin's projection method for the incompressible Navier-Stokes equations, Navier-Stokes equations: Theory and Numerical Methods, R. Rautmann et al. Eds., Springer (1992). [Google Scholar]
  26. B. Rivière, M.F. Wheeler and V. Girault, Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Part I. Comput. Geosci. 3 (1999) 337–360. [CrossRef] [Google Scholar]
  27. R. Temam, Sur l'approximation de la solution des equations de Navier-Stokes par la méthode des pas fractionnaires (I), (II). Arch. Rational Mech. Anal. 33 (1969) 377–385. [Google Scholar]
  28. R. Temam, Navier-Stokes equations. Theory and numerical analysis. North-Holland, Amsterdam (1979). [Google Scholar]
  29. S. Turek, On discrete projection methods for the incompressible Navier-Stokes equations: an algorithmic approach. Comput. Methods Appl. Mech. Engrg. 143 (1997) 271–288. [CrossRef] [MathSciNet] [Google Scholar]
  30. M.F. Wheeler, An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15 (1978) 152–161. [CrossRef] [MathSciNet] [Google Scholar]
  31. N.N. Yanenko, The method of fractional steps. The solution of problems of mathematical physics in several variables. Springer-Verlag, New York (1971). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you