Free Access
Volume 40, Number 2, March-April 2006
Page(s) 225 - 237
Published online 21 June 2006
  1. G.R. Baker and J.T. Beale, Vortex blob methods applied to interfacial motion. J. Comput. Phys. 196 (2004) 233–258. [CrossRef] [MathSciNet] [Google Scholar]
  2. R. Caflisch and O. Orellana, Long time existence for a slightly perturbed vortex sheet. Comm. Pure Appl. Math. 39 (1986) 807–838. [CrossRef] [MathSciNet] [Google Scholar]
  3. R. Caflisch and O. Orellana, Singularity solutions and ill-posedness for the evolution of vortex sheets. SIAM J. Math. Anal. 20 (1989) 293–307. [CrossRef] [MathSciNet] [Google Scholar]
  4. J.-Y. Chemin, A remark on the inviscid limit for two-dimensional incompressible fluids. Comm. Partial Differential Equations 21 (1996) 1771–1779. [CrossRef] [MathSciNet] [Google Scholar]
  5. A. Chorin and P. Bernard, Discretization of a vortex sheet with an example of roll-up. J. Comput. Phys. 13 (1973) 423–429. [CrossRef] [Google Scholar]
  6. J.-M. Delort, Existence de nappes de tourbillon en dimension deux. J. Amer. Math. Soc. 4 (1991) 553–586. [MathSciNet] [Google Scholar]
  7. R. DiPerna and A. Majda, Concentrations and regularizations for 2-D incompressible flow. Comm. Pure Appl. Math. XL (1987) 301–345. [Google Scholar]
  8. R. DiPerna and A. Majda, Reduced Hausdorff dimension and concentration-cancellation for two-dimensional incompressible flow. J. Am. Math. Soc. 1 (1988) 59–95. [CrossRef] [Google Scholar]
  9. J. Duchon and R. Robert, Global vortex sheet solutions of Euler equations in the plane. Comm. Partial Differential Equations 73 (1988) 215–224. [Google Scholar]
  10. D. Ebin, Ill-posedness of the Rayleigh-Taylor and Helmholtz problem for incompressible fluids. Comm. Partial Differential Equations 73 (1988) 1265–1295. [CrossRef] [Google Scholar]
  11. L.C. Evans, Weak convergence methods for nonlinear partial differential equations, CBMS Regional Conference Series in Mathematics 74 A.M.S., Providence, RI (1990). [Google Scholar]
  12. C. Greengard and E. Thomann, On DiPerna-Majda concentration sets for two-dimensional incompressible flow. Comm. Pure Appl. Math. 41 (1988) 295–303. [CrossRef] [MathSciNet] [Google Scholar]
  13. R. Krasny, Desingularization of periodic vortex sheet roll-up. J. Comput. Phys. 65 (1986) 292–313. [CrossRef] [Google Scholar]
  14. R. Krasny, Computation of vortex sheet roll-up in the Trefftz plane. J. Fluid Mech. 184 (1987) 123–155. [CrossRef] [Google Scholar]
  15. R. Krasny and M. Nitsche, The onset of chaos in vortex sheet flow. J. Fluid Mech. 454 (2002) 47–69. [CrossRef] [MathSciNet] [Google Scholar]
  16. G. Lebeau, Régularité du problème de Kelvin-Helmholtz pour l'équation d'Euler 2D. ESAIM: COCV 8 (2002) 801–825. [CrossRef] [EDP Sciences] [Google Scholar]
  17. J.G. Liu and Z.P. Xin, Convergence of vortex methods for weak solutions to the 2D Euler equations with vortex sheet data. Comm. Pure Appl. Math. XLVIII (1995) 611–628. [Google Scholar]
  18. M.C. Lopes Filho, H.J. Nussenzveig Lopes and Y.X. Zheng, Convergence of the vanishing viscosity approximation for superpositions of confined eddies. Commun. Math. Phys. 201 (1999) 291–304. [CrossRef] [Google Scholar]
  19. M.C. Lopes Filho, H.J. Nussenzveig Lopes and E. Tadmor, Approximate solutions of the incompressible Euler equations with no concentrations. Ann. I. H. Poincaré-An. 17 (2000) 371–412. [CrossRef] [Google Scholar]
  20. M.C. Lopes Filho, H.J. Nussenzveig Lopes and Z.P. Xin, Existence of vortex sheets with reflection symmetry in two space dimensions. Arch. Rational Mech. Anal. 158 (2001) 235–257. [CrossRef] [Google Scholar]
  21. M.C. Lopes Filho, H.J. Nussenzveig Lopes and M.O. Souza, On the equation satisfied by a steady Prandtl-Munk vortex sheet. Comm. Math. Sci. 1 (2003) 68–73. [Google Scholar]
  22. A. Majda, Remarks on weak solutions for vortex sheets with a distinguished sign. Indiana U. Math J. 42 (1993) 921–939. [CrossRef] [Google Scholar]
  23. A. Majda, G. Majda and Y.X. Zheng, Concentrations in the one-dimensional Vlasov-Poisson equations. I. Temporal development and non-unique weak solutions in the single component case. Physica D 74 (1994) 268–300. [CrossRef] [MathSciNet] [Google Scholar]
  24. M. Nitsche, M.A. Taylor and R. Krasny, Comparison of regularizations of vortex sheet motion, Proc. 2nd MIT Conf. Comput. Fluid and Solid Mech., K.J. Bathe Ed., Elsevier, Cambridge, MA (2003). [Google Scholar]
  25. W.R.C. Phillips and D.I. Pullin, On a generalization of Kaden's problem. J. Fluid Mech. 104 (1981) 45–53. [CrossRef] [Google Scholar]
  26. D.I. Pullin, On similarity flows containing two branched vortex sheets, in Mathematical Aspects of Vortex Dynamics, R. Caflisch Ed., SIAM (1989) 97–106. [Google Scholar]
  27. V. Scheffer, An inviscid flow with compact support in space-time. J. Geom. Anal. 3 (1993) 343–401. [MathSciNet] [Google Scholar]
  28. S. Schochet, The weak vorticity formulation of the 2D Euler equations and concentration-cancellation. Comm. P.D.E. 20 (1995) 1077–1104. [CrossRef] [Google Scholar]
  29. S. Schochet, Point-vortex method for periodic weak solutions of the 2-D Euler equations. Comm. Pure Appl. Math. XLIX (1996) 911–965. [Google Scholar]
  30. A. Shnirelman, On the non-uniqueness of weak solutions of the Euler equations. Comm. Pure Appl. Math. L (1997) 1261–1286. [Google Scholar]
  31. P.L. Sulem, C. Sulem, C. Bardos and U. Frisch, Finite time analyticity for the two and three dimensional Kelvin-Helmholtz instability. Comm. Math. Phys. 80 (1981) 485–516. [CrossRef] [MathSciNet] [Google Scholar]
  32. G. Tryggvason, W. Dahn and K. Sbeih, Fine structure of rollup by viscous and inviscid simulation. J. Fluids Eng.-T ASME 113 (1991) 31–36. [CrossRef] [Google Scholar]
  33. I. Vecchi and S.J. Wu, On L1-vorticity for 2-D incompressible flow. Manuscripta Math. 78 (1993) 403–412. [CrossRef] [MathSciNet] [Google Scholar]
  34. M. Vishik, Incompressible flows of an ideal fluid with vorticity in borderline spaces of Besov type. Ann. Sci. École Norm. S. Ser. 4 32 (1999) 769–812. [Google Scholar]
  35. S.J. Wu, Recent progress in mathematical analysis of vortex sheets, in Proceedings of the ICM, Beijing (2002) Vol. III, 233–242. [Google Scholar]
  36. V. Yudovich, Non-stationary flow of an ideal incompressible liquid (in Russian), Zh. Vych. Mat. 3 (1963) 1032–1066. [Google Scholar]
  37. V. Yudovich, Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal, incompressible fluid. Math. Res. Lett. 2 (1995) 27–38. [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you