Free Access
Issue
ESAIM: M2AN
Volume 40, Number 2, March-April 2006
Page(s) 239 - 267
DOI https://doi.org/10.1051/m2an:2006010
Published online 21 June 2006
  1. M. Ainsworth and I. Babuška, Reliable and robust a posteriori error estimation for singularly perturbed reaction-diffusion problems. SIAM J. Numer. Anal. 36 (1999) 331–353 (electronic). See also Corrigendum at http://www.maths.strath.ac.uk/~aas98107/papers.html. [CrossRef] [MathSciNet]
  2. M. Ainsworth and J.T. Oden, A unified approach to a posteriori error estimation using element residual methods. Numer. Math. 65 (1993) 23–50. [CrossRef] [MathSciNet]
  3. M. Ainsworth and J.T. Oden, A Posteriori Error Estimation in Finite Element Analysis. Wiley (2000).
  4. T. Apel, Anisotropic interpolation error estimates for isoparametric quadrilateral finite elements. Computing 60 (1998) 157–174. [CrossRef] [MathSciNet]
  5. T. Apel, Treatment of boundary layers with anisotropic finite elements. Z. Angew. Math. Mech. (1998).
  6. T. Apel, Anisotropic finite elements: local estimates and applications. B.G. Teubner, Stuttgart (1999).
  7. T. Apel, S. Grosman, P.K. Jimack and A. Meyer, A new methodology for anisotropic mesh refinement based upon error gradients. Appl. Numer. Math. 50 (2004) 329–341. [CrossRef] [MathSciNet]
  8. T. Apel and G. Lube, Anisotropic mesh refinement for a singularly perturbed reaction diffusion model problem. Appl. Numer. Math. 26 (1998) 415–433. [CrossRef] [MathSciNet]
  9. I. Babuška and W. Rheinboldt, A posteriori error estimates for the finite element method. Int. J. Numer. Meth. Eng. 12 (1978) 1597–1615. [CrossRef]
  10. R. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations. Math. Comp. 44 (1985) 283–301. [CrossRef] [MathSciNet]
  11. H. Bufler and E. Stein, Zur Plattenberechnung mittels finiter Elemente. Ingenier Archiv 39 (1970) 248–260. [CrossRef]
  12. P.G. Ciarlet, The finite element method for elliptic problems. North-Holland Publishing Co., Amsterdam. Studies in Mathematics and its Applications, Vol. 4, (1978).
  13. M. Dobrowolski, S. Gräf and C. Pflaum, On a posteriori error estimators in the infinte element method on anisotropic meshes. Electron. Trans. Numer. Anal. 8 (1999) 36–45.
  14. S. Grosman, The robustness of the hierarchical a posteriori error estimator for reaction-diffusion equation on anisotropic meshes. SFB393-Preprint 2, Technische Universität Chemnitz, SFB 393 (Germany), (2004).
  15. R. Hagen, S. Roch, and B. Silbermann, C*-algebras and numerical analysis. Marcel Dekker Inc., New York (2001).
  16. H. Han and R.B. Kellogg, Differentiability properties of solutions of the equation Formula in a square. SIAM J. Math. Anal. 21 (1990) 394–408. [CrossRef] [MathSciNet]
  17. G. Kunert, A posteriori error estimation for anisotropic tetrahedral and triangular finite element meshes. Logos Verlag, Berlin, 1999. Also PhD thesis, TU Chemnitz, http://archiv.tu-chemnitz.de/pub/1999/0012/index.html.
  18. G. Kunert, An a posteriori residual error estimator for the finite element method on anisotropic tetrahedral meshes. Numer. Math. 86 (2000) 471–490. [CrossRef] [MathSciNet]
  19. G. Kunert, A local problem error estimator for anisotropic tetrahedral finite element meshes. SIAM J. Numer. Anal. 39 (2001) 668–689. [CrossRef] [MathSciNet]
  20. G. Kunert, Robust a posteriori error estimation for a singularly perturbed reaction-diffusion equation on anisotropic tetrahedral meshes. Adv. Comput. Math. 15 (2001) 237–259. [CrossRef] [MathSciNet]
  21. G. Kunert, Robust local problem error estimation for a singularly perturbed problem on anisotropic finite element meshes. ESAIM: M2AN 35 (2001) 1079–1109. [CrossRef] [EDP Sciences]
  22. G. Kunert and R. Verfürth, Edge residuals dominate a posteriori error estimates for linear finite element methods on anisotropic triangular and tetrahedral meshes. Numer. Math. 86 (2000) 283–303. [CrossRef] [MathSciNet]
  23. P. Ladevèze and D. Leguillon, Error estimate procedure in the finite element method and applications. SIAM J. Numer. Anal. 20 (1983) 485–509. [CrossRef] [MathSciNet]
  24. K.G. Siebert, An a posteriori error estimator for anisotropic refinement. Numer. Math. 73 (1996) 373–398. [CrossRef] [MathSciNet]
  25. R. Verfürth, A review of a posteriori error estimation and adaptive mesh-refinement techniques. Wiley-Teubner Series Advances in Numerical Mathematics. Chichester: John Wiley & Sons. Stuttgart: B.G. Teubner (1996).
  26. M. Vogelius and I. Babuška, On a dimensional reduction method. I. The optimal selection of basis functions. Math. Comp. 37 (1981) 31–46. [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you