Free Access
Volume 40, Number 3, May-June 2006
Page(s) 431 - 468
Published online 22 July 2006
  1. A.A. Amsden, P.J. O'Rourke and T.D. Butler, Kiva II, a computer program for chemically reactive flows with sprays. Technical Report LA-11560-MS. Los Alamos National Laboratory, Los Alamos, New Mexico (1989). [Google Scholar]
  2. G. Chanteperdrix, P. Villedieu and J.P. Vila, A compressible model for separated two-phase flows computations, in ASME Fluids Engineering Division Summer Meeting, number 31141, Montreal (2002). [Google Scholar]
  3. K. Domelevo, The kinetic sectional approach for noncolliding evaporating sprays. Atomization Spray. 11 (2001) 291–303. [Google Scholar]
  4. K. Domelevo and L. Sainsaulieu, A numerical method for the computation of the dispersion of a cloud of particles by a turbulent gas flow field. J. Comput. Phys. 133 (1997) 256–278. [CrossRef] [MathSciNet] [Google Scholar]
  5. D.A. Drew and S.L. Passman, Theory of multicomponent fluids. Applied Mathematical Sciences, Springer 135 (1999). [Google Scholar]
  6. G. Dufour and P. Villedieu, A second-order multi-fluid model for evaporating sprays. ESAIM: M2AN 39 (2005) 931–963. [CrossRef] [EDP Sciences] [Google Scholar]
  7. J.K. Dukowicz, A particle-fluid numerical model for liquid sprays. J. Comput. Phys. 35 (1980) 229–253. [CrossRef] [MathSciNet] [Google Scholar]
  8. J.B. Greenberg, D. Albagli and Y. Tambour, An opposed jet quasi-monodisperse spray diffusion flame. Combust. Sci. Technol. 50 (1986) 255–270. [CrossRef] [Google Scholar]
  9. J.B. Greenberg, I. Silverman and Y. Tambour, On the origin of spray sectional conservation equations. Combust. Flame 93 (1993) 90–96. [CrossRef] [Google Scholar]
  10. H. Guillard and A. Murrone, A five equation reduced model for compressible two phase flow problems. Prepublication 4778, INRIA (2003). [Google Scholar]
  11. A. Harten, J.M. Hyman and P.D. Lax, On finite-difference approximations and entropy conditions for shocks. Comm. Pure Appl. Math. 29 (1976) 297–322. With an appendix by B. Keyfitz. [CrossRef] [MathSciNet] [Google Scholar]
  12. J. Hylkema, Modélisation cinétique et simulation numérique d'un brouillard dense de gouttelettes. Application aux propulseurs à poudre. Ph.D. thesis, ENSAE (1999). [Google Scholar]
  13. F. Laurent, Analyse numérique d'une méthode multi-fluide Eulérienne pour la description de sprays qui s'évaporent. C. R. Math. Acad. Sci. Paris 334 (2002) 417–422. [CrossRef] [MathSciNet] [Google Scholar]
  14. F. Laurent, Modélisation mathématique et numérique de la combustion de brouillards de gouttes polydispersés. Ph.D. thesis, Université Claude Bernard, Lyon 1 (2002). [Google Scholar]
  15. F. Laurent and M. Massot, Multi-fluid modeling of laminar poly-dispersed spray flames: origin, assumptions and comparison of the sectional and sampling methods. Combust. Theor. Model. 5 (2001) 537–572. [CrossRef] [Google Scholar]
  16. F. Laurent, M. Massot and P. Villedieu, Eulerian multi-fluid modeling for the numerical simulation of polydisperse dense liquid spray. J. Comput. Phys. 194 (2004) 505–543. [CrossRef] [MathSciNet] [Google Scholar]
  17. F. Laurent, V. Santoro, M. Noskov, A. Gomez, M.D. Smooke and M. Massot, Accurate treatment of size distribution effects in polydispersed spray diffusion flames: multi-fluid modeling, computations and experiments. Combust. Theor. Model. 8 (2004) 385–412. [CrossRef] [Google Scholar]
  18. R.J. LeVeque, Numerical methods for conservation laws. Birkhäuser Verlag, Basel, second edition (1992). [Google Scholar]
  19. D.L. Marchisio, R.D. Vigil and R.O. Fox, Quadrature method of moments for aggregation-breakage processes. J. Colloid Interf. Sci. 258 (2003) 322–334. [CrossRef] [PubMed] [Google Scholar]
  20. M. Massot and P. Villedieu, Modélisation multi-fluide eulérienne pour la simulation de brouillards denses polydispersés. C. R. Acad. Sci. Paris Sér. I Math. 332 (2001) 869–874. [Google Scholar]
  21. M. Massot, M. Kumar, A. Gomez and M.D. Smooke, Counterflow spray diffusion flames of heptane: computations and experiments, in Proceedings of the 27th Symp. (International) on Combustion, The Comb. Institute (1998) 1975–1983. [Google Scholar]
  22. P.J. O'Rourke, Collective drop effects on vaporizing liquid sprays. Ph.D. thesis, University of Princeton (1981). [Google Scholar]
  23. D. Ramkrishna and A.G. Fredrickson, Population Balances: Theory and Applications to Particulate Systems in Engineering. Academic Press (2000). [Google Scholar]
  24. P.-A. Raviart and L. Sainsaulieu, A nonconservative hyperbolic system modeling spray dynamics. I. Solution of the Riemann problem. Math. Mod. Meth. Appl. S. 5 (1995) 297–333. [CrossRef] [MathSciNet] [Google Scholar]
  25. M. Rüger, S. Hohmann, M. Sommerfeld and G. Kohnen, Euler/Lagrange calculations of turbulent sprays : the effect of droplet collisions and coalescence. Atomization Spray. 10 (2000) 47–81. [Google Scholar]
  26. B. van Leer, Towards the ultimate conservative difference scheme v. a second order sequel to godunov's method. J. Comput. Phys. 32 (1979) 101–136. [NASA ADS] [CrossRef] [Google Scholar]
  27. P. Villedieu and J. Hylkema, Une méthode particulaire aléatoire reposant sur une équation cinétique pour la simulation numérique des sprays denses de gouttelettes liquides. C. R. Acad. Sci. Paris Sér. I Math. 325 (1997) 323–328. [Google Scholar]
  28. F.A. Williams, Spray combustion and atomization. Phys. Fluids 1 (1958) 541–545. [CrossRef] [Google Scholar]
  29. F.A. Williams, Combustion Theory (Combustion Science and Engineering Series). F.A. Williams Ed., Reading, MA: Addison-Wesley (1985). [Google Scholar]
  30. D.L. Wright, R. McGraw and D.E. Rosner, Bivariate extension of the quadrature method of moments for modeling simultaneous coagulation and sintering of particle populations. J. Colloid Interf. Sci. 236 (2001) 242–251. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you