Free Access
Issue
ESAIM: M2AN
Volume 40, Number 3, May-June 2006
Page(s) 469 - 499
DOI https://doi.org/10.1051/m2an:2006020
Published online 22 July 2006
  1. R.L. Actis, B.A. Szabo and C. Schwab, Hierarchic models for laminated plates and shells. Comput. Methods Appl. Mech. Engrg. 172 (1999) 79–107. [CrossRef] [MathSciNet] [Google Scholar]
  2. V.I. Agoshkov, D. Ambrosi, V. Pennati, A. Quarteroni and F. Saleri, Mathematical and numerical modelling of shallow water flow. Comput. Mech. 11 (1993) 280–299. [CrossRef] [MathSciNet] [Google Scholar]
  3. V.I. Agoshkov, A. Quarteroni and F. Saleri, Recent developments in the numerical simulation of shallow water equations I: boundary conditions. Appl. Numer. Math. 15 (1994) 175–200. [CrossRef] [MathSciNet] [Google Scholar]
  4. M. Amara, D. Capatina-Papaghiuc and D. Trujillo, Hydrodynamical modelling and multidimensional approximation of estuarian river flows. Comput. Visual. Sci. 6 (2004) 39–46. [Google Scholar]
  5. W. Bangerth and R. Rannacher, Adaptive finite element techniques for the acoustic wave equation. J. Comput. Acoust. 9 (2001) 575–591. [CrossRef] [MathSciNet] [Google Scholar]
  6. Z.P. Bažant, Spurious reflection of elastic waves in nonuniform finite element grids. Comput. Methods Appl. Mech. Engrg. 16 (1978) 91–100. [CrossRef] [Google Scholar]
  7. R. Becker and R. Rannacher, An optimal control approach to a posteriori error estimation in finite element methods, in Acta Numerica 2001, A. Iserles Ed., Cambridge University Press, Cambridge, UK (2001). [Google Scholar]
  8. J.P. Benque, A. Haugel and P.L. Viollet, Numerical methods in environmental fluid mechanics, in Engineering Applications of Computational Hydraulics, M.B. Abbott and J.A. Cunge Eds., Vol. II (1982). [Google Scholar]
  9. M. Braack and A. Ern, A posteriori control of modeling errors and discretizatin errors. Multiscale Model. Simul. 1 (2003) 221–238. [NASA ADS] [CrossRef] [EDP Sciences] [MathSciNet] [PubMed] [Google Scholar]
  10. Ph. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland Publishing Company, Amsterdam (1978). [Google Scholar]
  11. J.M. Cnossen, H. Bijl, B. Koren and E.H. van Brummelen, Model error estimation in global functionals based on adjoint formulation, in International Conference on Adaptive Modeling and Simulation, ADMOS 2003, N.-E. Wiberg and P. Díez Eds., CIMNE, Barcelona (2003). [Google Scholar]
  12. A. Ern, S. Perotto and A. Veneziani, Finite element simulation with variable space dimension. The general framework (2006) (in preparation). [Google Scholar]
  13. M. Feistauer and C. Schwab, Coupling of an interior Navier-Stokes problem with an exterior Oseen problem. J. Math. Fluid. Mech. 3 (2001) 1–17. [CrossRef] [MathSciNet] [Google Scholar]
  14. L. Formaggia and A. Quarteroni, Mathematical Modelling and Numerical Simulation of the Cardiovascular System, in Handbook of Numerical Analysis, Vol. XII, North-Holland, Amsterdam (2004) 3–127. [Google Scholar]
  15. L. Formaggia, F. Nobile, A. Quarteroni and A. Veneziani, Multiscale modelling of the circolatory system: a preliminary analysis. Comput. Visual. Sci. 2 (1999) 75–83. [CrossRef] [MathSciNet] [PubMed] [Google Scholar]
  16. M.B. Giles and N.A. Pierce, Adjoint equations in CFD: duality, boundary conditions and solution behaviour, in 13th Computational Fluid Dynamics Conference Proceedings (1997) AIAA paper 97–1850. [Google Scholar]
  17. M.B. Giles and E. Süli, Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality. Acta Numerica 11 (2002) 145–236. [CrossRef] [MathSciNet] [Google Scholar]
  18. E. Godlewski and P.A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws. Springer-Verlag, New York (1996). [Google Scholar]
  19. A. Griewank and A. Walther, Revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation. ACM T. Math. Software 26 (2000) 19–45. [CrossRef] [Google Scholar]
  20. I. Harari, Reducing spurious dispersion, anisotropy and reflection in finite element analysis of time-harmonic acoustics. Comput. Methods Appl. Mech. Engrg. 140 (1997) 39–58. [CrossRef] [MathSciNet] [Google Scholar]
  21. J.L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications. Volume I. Springer-Verlag, Berlin (1972). [Google Scholar]
  22. G.I. Marchuk, Adjoint Equations and Analysis of Complex Systems. Kluwer Academic Publishers, Dordrecht (1995). [Google Scholar]
  23. G.I. Marchuk, V.I. Agoshkov and V.P. Shutyaev, Adjoint equations and perturbation algorithms in nonlinear problems. CRC Press (1996). [Google Scholar]
  24. S. Micheletti and S. Perotto (2006) (in preparation). [Google Scholar]
  25. E. Miglio, S. Perotto and F. Saleri, A multiphysics strategy for free-surface flows, Domain Decomposition Methods in Science and Engineering, R. Kornhuber, R.H.W. Hoppe, J. Périaux, O. Pironneau, O. Widlund, J. Xu Eds., Springer-Verlag, Lect. Notes Comput. Sci. Engrg. 40 (2004) 395–402. [Google Scholar]
  26. E. Miglio, S. Perotto and F. Saleri, Model coupling techniques for free-surface flow problems. Part I. Nonlinear Analysis 63 (2005) 1885–1896. [CrossRef] [Google Scholar]
  27. J.T. Oden and S. Prudhomme, Estimation of modeling error in computational mechanics. J. Comput. Phys. 182 (2002) 469–515. [Google Scholar]
  28. J.T. Oden and K.S. Vemaganti, Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. I. Error estimates and adaptive algorithms. J. Comput. Phys. 164 (2000) 22–47. [CrossRef] [MathSciNet] [Google Scholar]
  29. J.T. Oden and K.S. Vemaganti, Estimation of local modeling error and goal-oriented adaptive modeling of heterogeneous materials. II. A computational environment for adaptive modeling of heterogeneous elastic solids. Comput. Methods Appl. Mech. Engrg. 190 (2001) 6089–6124. [CrossRef] [MathSciNet] [Google Scholar]
  30. J.T. Oden, S. Prudhomme, D.C. Hammerand and M.S. Kuczma, Modeling error and adaptivity in nonlinear continuum mechanics. Comput. Method. Appl. M. 190 (2001) 6663–6684. [CrossRef] [Google Scholar]
  31. A. Quarteroni and L. Stolcis, Heterogeneous domain decomposition for compressible flows, in Proceedings of the ICFD Conference on Numerical Methods for Fluid Dynamics, M. Baines and W.K. Morton Eds., Oxford University Press, Oxford (1995) 113–128. [Google Scholar]
  32. A. Quarteroni and A. Valli, Domain decomposition methods for partial differential equations. Oxford University Press Inc., New York (1999). [Google Scholar]
  33. M. Schulz and G. Steinebach, Two-dimensional modelling of the river Rhine. J. Comput. Appl. Math. 145 (2002) 11–20. [CrossRef] [MathSciNet] [Google Scholar]
  34. E. Stein and S. Ohnimus, Anisotropic discretization- and model-error estimation in solid mechanics by local Neumann problems. Comput. Methods Appl. Mech. Engrg. 176 (1999) 363–385. [CrossRef] [MathSciNet] [Google Scholar]
  35. G.S. Stelling, On the construction of computational models for shallow water equations. Rijkswaterstaat Communication 35 (1984). [Google Scholar]
  36. C.B. Vreugdenhil, Numerical Methods for Shallow-Water Flows. Kluwer Academic Press, Dordrecht (1998). [Google Scholar]
  37. G.B. Whitham, Linear and Nonlinear Waves. Wiley, New York (1974). [Google Scholar]
  38. F.W. Wubs, Numerical solution of the shallow-water equations. CWI Tract, 49, F.W. Wubs Ed., Amsterdam (1988). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you