Free Access
Issue
ESAIM: M2AN
Volume 40, Number 4, July-August 2006
Page(s) 689 - 703
DOI https://doi.org/10.1051/m2an:2006026
Published online 15 November 2006
  1. Y. Achdou and F. Nataf, A Robin-Robin preconditioner for an advection-diffusion problem. C. R. Acad. Sci. Paris Sér. I 325 (1997) 1211–1216. [Google Scholar]
  2. Y. Achdou, P. Le Tallec, F. Nataf and M. Vidrascu, A domain decomposition preconditioner for an advection-diffusion problem. Comput. Methods Appl. Mech. Engrg. 184 (2000) 145–170. [CrossRef] [MathSciNet] [Google Scholar]
  3. J.D. Benamou and B. Després, A domain decomposition method for the Helmholtz equation and related optimal control. J. Comp. Phys. 136 (1997) 68–82. [CrossRef] [Google Scholar]
  4. M. Bjørhus, A note on the convergence of discretized dynamic iteration. BIT 35 (1995) 291–296. [CrossRef] [MathSciNet] [Google Scholar]
  5. J.-F. Bourgat, R. Glowinski, P. Le Tallec and M. Vidrascu, Variational formulation and algorithm for trace operator in domain decomposition calculations, in Domain Decomposition Methods, T. Chan, R. Glowinski, J. Périaux and O. Widlund Eds., Philadelphia, PA, SIAM (1989) 3–16. [Google Scholar]
  6. X.-C. Cai, C. Farhat and M. Sarkis, A minimum overlap restricted additive Schwarz preconditioner and appication in 3D flow simulations, in Proceedings of the 10th Domain Decomposition Methods in Sciences and Engineering, C. Farhat J. Mandel and X.-C. Cai Eds., Contemporary Mathematics, AMS 218 (1998) 479–485. [Google Scholar]
  7. P. Chevalier and F. Nataf, Symmetrized method with optimized second-order conditions for the Helmholtz equation, in Domain Decomposition Methods, 10 (Boulder, CO, 1997). Amer. Math. Soc., Providence, RI (1998) 400–407. [Google Scholar]
  8. S. Clerc, Non-overlapping Schwarz method for systems of first order equations. Cont. Math. 218 (1998) 408–416. [Google Scholar]
  9. V. Dolean and F. Nataf, An optimized Schwarz algorithm for the compressible Euler equations. Technical Report 556, CMAP, École Polytechnique (2004). [Google Scholar]
  10. V. Dolean, S. Lanteri and F. Nataf, Construction of interface conditions for solving compressible Euler equations by non-overlapping domain decomposition methods. Int. J. Numer. Meth. Fluids 40 (2002) 1485–1492. [CrossRef] [Google Scholar]
  11. V. Dolean, S. Lanteri and F. Nataf, Convergence analysis of a Schwarz type domain decomposition method for the solution of the Euler equations. Appl. Num. Math. 49 (2004) 153–186. [CrossRef] [Google Scholar]
  12. B. Engquist and H.-K. Zhao, Absorbing boundary conditions for domain decomposition. Appl. Numer. Math. 27 (1998) 341–365. [CrossRef] [MathSciNet] [Google Scholar]
  13. M.J. Gander and L. Halpern, Méthodes de relaxation d'ondes pour l'équation de la chaleur en dimension 1. C.R. Acad. Sci. Paris, Sér. I 336 (2003) 519–524. [Google Scholar]
  14. M.J. Gander, L. Halpern and F. Nataf, Optimal Schwarz waveform relaxation for the one dimensional wave equation. Technical Report 469, CMAP, École Polytechnique (2001). [Google Scholar]
  15. M.J. Gander, F. Magoulès and F. Nataf, Optimized Schwarz methods without overlap for the Helmholtz equation. SIAM J. Sci. Comput. 24 (2002) 38–60. [CrossRef] [MathSciNet] [Google Scholar]
  16. F.R. Gantmacher, Théorie des matrices. Tome 1: Théorie générale. Traduit du Russe par C. Sarthou. Collection Universitaire de Mathématiques, No. 18. Dunod, Paris (1966). [Google Scholar]
  17. F.R. Gantmacher, Théorie des matrices. Tome 2: Questions spéciales et applications. Traduit du Russe par C. Sarthou. Collection Universitaire de Mathématiques, No. 19. Dunod, Paris (1966). [Google Scholar]
  18. F.R. Gantmacher, Theorie des matrices. Dunod (1966). [Google Scholar]
  19. F.R. Gantmacher, The theory of matrices. Vol. 1. AMS Chelsea Publishing, Providence, RI (1998). Translated from the Russian by K.A. Hirsch, Reprint of the 1959 translation. [Google Scholar]
  20. L. Gerardo-Giorda, P. Le Tallec and F. Nataf, A Robin-Robin preconditioner for advection-diffusion equations with discontinuous coefficients. Comput. Methods Appl. Mech. Engrg. 193 (2004) 745–764. [CrossRef] [MathSciNet] [Google Scholar]
  21. R. Glowinski, Y.A. Kuznetsov, G. Meurant, J. Periaux and O.B. Widlund, Eds. Fourth International Symposium on Domain Decomposition Methods for Partial Differential Equations, Philadelphia, PA, SIAM (1991). [Google Scholar]
  22. C. Japhet, F. Nataf and F. Rogier, The optimized order 2 method. Application to convection-diffusion problems. Future Generation Computer Systems FUTURE 18 (2001). [Google Scholar]
  23. S.-C. Lee, M.N. Vouvakis and J.-F. Lee, A non-overlapping domain decomposition method with non-matching grids for modeling large finite antenna arrays. J. Comput. Phys. 203 (2005) 1–21. [CrossRef] [MathSciNet] [Google Scholar]
  24. J. Li, A Dual-Primal FETI method for incompressible Stokes equations. Numer. Math. 102 (2005) 257–275. [CrossRef] [MathSciNet] [Google Scholar]
  25. J. Li and O. Widlund, BDDC algorithms for incompressible Stokes equations. Technical report (2006) (submitted). [Google Scholar]
  26. P.-L. Lions, On the Schwarz alternating method. III: a variant for nonoverlapping subdomains, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations, held in Houston, Texas, March 20–22, 1989, T.F. Chan, R. Glowinski, J. Périaux and O. Widlund, Eds., Philadelphia, PA, SIAM (1990). [Google Scholar]
  27. J. Mandel, Balancing domain decomposition. Commun. Appl. Numer. M. 9 (1992) 233–241. [CrossRef] [Google Scholar]
  28. A. Quarteroni, Domain decomposition methods for systems of conservation laws: spectral collocation approximation. SIAM J. Sci. Stat. Comput. 11 (1990) 1029–1052. [CrossRef] [Google Scholar]
  29. A. Quarteroni and L. Stolcis, Homogeneous and heterogeneous domain decomposition methods for compressible flow at high reynolds numbers. Technical Report 33, CRS4 (1996). [Google Scholar]
  30. Y.H. De Roeck and P. Le Tallec, Analysis and Test of a Local Domain Decomposition Preconditioner, in R. Glowinski et al. [21] (1991). [Google Scholar]
  31. A. Toselli and O. Widlund, Domain Decomposition Methods – Algorithms and Theory. Springer Series in Computational Mathematics. Springer Verlag (2004). [Google Scholar]
  32. J. T. Wloka, B. Rowley and B. Lawruk, Boundary value problems for elliptic systems. Cambridge University Press, Cambridge (1995). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you