Free Access
Volume 40, Number 4, July-August 2006
Page(s) 705 - 734
Published online 15 November 2006
  1. B. Brogliato, A.A. ten Dam, L. Paoli, F. Genot and M. Abadie, Numerical simulation of finite dimensional multibody nonsmooth mechanical systems. ASME Appl. Mechanics Rev. 55 (2002) 107–149. [CrossRef] [Google Scholar]
  2. Y. Dumont, Vibrations of a beam between stops: Numerical simulations and comparison of several numerical schemes. Math. Comput. Simul. 60 (2002) 45–83. [CrossRef] [Google Scholar]
  3. Y. Dumont, Some remarks on a vibro-impact scheme. Numer. Algorithms 33 (2003) 227–240. [CrossRef] [MathSciNet] [Google Scholar]
  4. Y. Dumont and L. Paoli, Simulations of beam vibrations between stops: comparison of several numerical approaches, in Proceedings of the Fifth EUROMECH Nonlinear Dynamics Conference (ENOC-2005), CD Rom (2005). [Google Scholar]
  5. L. Fox, The numerical solution of two-point boudary values problems in ordinary differential equations, Oxford University Press, New York (1957). [Google Scholar]
  6. J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems and bifurcations of vector fields. Springer-Verlag, New York, Berlin, Heidelberg (1983). [Google Scholar]
  7. T. Hughes, The finite element method. Linear static and dynamic finite element analysis. Prentice-Hall International, Englewood Cliffs (1987). [Google Scholar]
  8. K. Kuttler and M. Shillor, Vibrations of a beam between two stops. Dynamics of continuous, discrete and impulsive systems, Series B, Applications and Algorithms 8 (2001) 93–110. [Google Scholar]
  9. C.H. Lamarque and O. Janin, Comparison of several numerical methods for mechanical systems with impacts. Int. J. Num. Meth. Eng. 51 (2001) 1101–1132. [CrossRef] [Google Scholar]
  10. F.C. Moon and S.W. Shaw, Chaotic vibration of a beam with nonlinear boundary conditions. Int. J. Nonlinear Mech. 18 (1983) 465–477. [CrossRef] [Google Scholar]
  11. L. Paoli, Analyse numérique de vibrations avec contraintes unilatérales. Ph.D. thesis, University of Lyon 1, France (1993). [Google Scholar]
  12. L. Paoli, Time-discretization of vibro-impact. Phil. Trans. Royal Soc. London A. 359 (2001) 2405–2428. [Google Scholar]
  13. L. Paoli, An existence result for non-smooth vibro-impact problems. Math. Mod. Meth. Appl. S. (M3AS) 15 (2005) 53–93. [CrossRef] [Google Scholar]
  14. L. Paoli and M. Schatzman, Mouvement à un nombre fini de degrés de liberté avec contraintes unilatérales : cas avec perte d'énergie. RAIRO Modél. Math. Anal. Numér. 27 (1993) 673–717. [MathSciNet] [Google Scholar]
  15. L. Paoli and M. Schatzman, Ill-posedness in vibro-impact and its numerical consequences, in Proceedings of European Congress on COmputational Methods in Applied Sciences and engineering (ECCOMAS), CD Rom (2000). [Google Scholar]
  16. L. Paoli and M. Schatzman, A numerical scheme for impact problems, I and II. SIAM Numer. Anal. 40 (2002) 702–733; 734–768. [Google Scholar]
  17. P. Ravn, A continuous analysis method for planar multibody systems with joint clearance. Multibody Syst. Dynam. 2 (1998) 1–24. [Google Scholar]
  18. R.T. Rockafellar, Convex analysis. Princeton University Press, Princeton (1970). [Google Scholar]
  19. M. Schatzman and M. Bercovier, Numerical approximation of a wave equation with unilateral constraints. Math. Comp. 53 (1989) 55–79. [Google Scholar]
  20. S.W. Shaw and R.H. Rand, The transition to chaos in a simple mechanical system. Int. J. Nonlinear Mech. 24 (1989) 41–56. [CrossRef] [Google Scholar]
  21. J. Simon, Compact sets in the space Lp(0,T;B) Ann. Mat. Pur. Appl. 146 (1987) 65–96. [Google Scholar]
  22. D. Stoianovici and Y. Hurmuzlu, A critical study of applicability of rigid body collision theory. ASME J. Appl. Mech. 63 (1996) 307–316. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you