Free Access
Volume 40, Number 4, July-August 2006
Page(s) 735 - 764
Published online 15 November 2006
  1. R. Abgrall and R. Saurel, Discrete equations for physical and numerical compressible multiphase mixtures. J. Comput. Phys. 186 (2003) 361–396. [CrossRef] [MathSciNet]
  2. M. Baudin, C. Berthon, F. Coquel, R. Masson and Q.H. Tran, A relaxation method for two-phase flow models with hydrodynamic closure law. Numer. Math. 99 (2005) 411–440. [CrossRef] [MathSciNet]
  3. M. Baudin, F. Coquel and Q.H. Tran, A semi-implicit relaxation scheme for modeling two-phase flow in a pipeline. SIAM J. Sci. Comput. 27 (2005) 914–936. [CrossRef] [MathSciNet]
  4. K.H. Bendiksen, An experimental investigation of the motion of long bubbles in inclined tubes. Int. J. Multiphas. Flow 10 (1984) 467–483. [CrossRef]
  5. S. Benzoni-Gavage, Analyse numérique des modèles hydrodynamiques d'écoulements diphasiques instationnaires dans les réseaux de production pétrolière. Thèse ENS Lyon, France (1991).
  6. J. Cortes, A. Debussche and I. Toumi, A density perturbation method to study the eigenstructure of two-phase flow equation systems, J. Comput. Phys. 147 (1998) 463–484.
  7. S. Evje and K.K. Fjelde, Hybrid flux-splitting schemes for a two-phase flow model. J. Comput. Phys. 175 (2002) 674–201. [CrossRef]
  8. S. Evje and K.K. Fjelde, On a rough AUSM scheme for a one-dimensional two-phase model. Comput. Fluids 32 (2003) 1497–1530. [CrossRef] [MathSciNet]
  9. S. Evje and T. Flåtten, Hybrid flux-splitting schemes for a common two-fluid model. J. Comput. Phys. 192 (2003) 175–210. [CrossRef]
  10. I. Faille and E. Heintzé, A rough finite volume scheme for modeling two-phase flow in a pipeline. Comput. Fluids 28 (1999) 213–241. [CrossRef] [MathSciNet]
  11. K.K. Fjelde and K.H. Karlsen, High-resolution hybrid primitive-conservative upwind schemes for the drift-flux model. Comput. Fluids 31 (2002) 335–367. [CrossRef]
  12. F. França and R.T. Lahey, Jr., The use of drift-flux techniques for the analysis of horizontal two-phase flows. Int. J. Multiphas. Flow 18 (1992) 787–801. [CrossRef]
  13. A. Harten, High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49 (1983) 357–393. [NASA ADS] [CrossRef] [MathSciNet]
  14. S. Jin and Z.P. Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Commun. Pur. Appl. Math. 48 (1995) 235–276. [CrossRef] [MathSciNet]
  15. S. Karni, E. Kirr, A. Kurganov and G. Petrova, Compressible two-phase flows by central and upwind schemes. ESAIM: M2AN 38 (2004) 477–493. [CrossRef] [EDP Sciences]
  16. R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge, UK (2002).
  17. J.M. Masella, Q.H. Tran, D. Ferre and C. Pauchon, Transient simulation of two-phase flows in pipes. Int. J. Multiphas. Flow 24 (1998) 739–755. [CrossRef]
  18. S.T. Munkejord, S. Evje and T. Flåtten, The multi-stage centred-scheme approach applied to a drift-flux two-phase flow model. Int. J. Numer. Meth. Fl. 52 (2006) 679–705. [CrossRef]
  19. A. Murrone and H. Guillard, A five equation reduced model for compressible two phase flow problems. J. Comput. Phys. 202 (2005) 664–698. [CrossRef] [MathSciNet]
  20. S. Osher, Riemann solvers, the entropy condition, and difference approximations. SIAM J. Numer. Anal. 21 (1984) 217–235. [CrossRef] [MathSciNet]
  21. V.H. Ransom and D.L. Hicks, Hyperbolic two-pressure models for two-phase flow. J. Comput. Phys. 53 (1984) 124–151. [CrossRef] [MathSciNet]
  22. P.L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43 (1981) 357–372. [NASA ADS] [CrossRef] [MathSciNet]
  23. J.E. Romate, An approximate Riemann solver for a two-phase flow model with numerically given slip relation. Comput. Fluids 27 (1998) 455–477. [CrossRef] [MathSciNet]
  24. L. Sainsaulieu, Finite volume approximation of two-phase fluid flow based on an approximate Roe-type Riemann solver. J. Comput. Phys. 121 (1995) 1–28. [CrossRef] [MathSciNet]
  25. R. Saurel and R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150 (1999) 425–467. [CrossRef] [MathSciNet]
  26. H.B. Stewart and B. Wendroff, Review article; Two-phase flow: models and methods. J. Comput. Phys. 56 (1984) 363–409.
  27. V.A. Titarev and E.F. Toro, MUSTA schemes for multi-dimensional hyperbolic systems: analysis and improvements. Int. J. Numer. Meth. Fl. 49 (2005) 117–147. [CrossRef]
  28. E.F. Toro, Riemann solvers and numerical methods for fluid dynamics, 2nd edn. Springer-Verlag, Berlin (1999).
  29. I. Toumi, An upwind numerical method for two-fluid two-phase flow models. Nucl. Sci. Eng. 123 (1996) 147–168.
  30. I. Toumi and D. Caruge, An implicit second-order numerical method for three-dimensional two-phase flow calculations. Nucl. Sci. Eng. 130 (1998) 213–225.
  31. I. Toumi and A. Kumbaro, An approximate linearized Riemann solver for a two-fluid model. J. Comput. Phys. 124 (1996) 286–300. [CrossRef] [MathSciNet]
  32. B. van Leer, Towards the ultimate conservative difference scheme IV. New approach to numerical convection. J. Comput. Phys. 23 (1977) 276–299. [NASA ADS] [CrossRef]
  33. N. Zuber and J.A. Findlay, Average volumetric concentration in two-phase flow systems. J. Heat Transfer 87 (1965) 453–468.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you