Free Access
Volume 40, Number 4, July-August 2006
Page(s) 735 - 764
Published online 15 November 2006
  1. R. Abgrall and R. Saurel, Discrete equations for physical and numerical compressible multiphase mixtures. J. Comput. Phys. 186 (2003) 361–396. [CrossRef] [MathSciNet] [Google Scholar]
  2. M. Baudin, C. Berthon, F. Coquel, R. Masson and Q.H. Tran, A relaxation method for two-phase flow models with hydrodynamic closure law. Numer. Math. 99 (2005) 411–440. [CrossRef] [MathSciNet] [Google Scholar]
  3. M. Baudin, F. Coquel and Q.H. Tran, A semi-implicit relaxation scheme for modeling two-phase flow in a pipeline. SIAM J. Sci. Comput. 27 (2005) 914–936. [CrossRef] [MathSciNet] [Google Scholar]
  4. K.H. Bendiksen, An experimental investigation of the motion of long bubbles in inclined tubes. Int. J. Multiphas. Flow 10 (1984) 467–483. [Google Scholar]
  5. S. Benzoni-Gavage, Analyse numérique des modèles hydrodynamiques d'écoulements diphasiques instationnaires dans les réseaux de production pétrolière. Thèse ENS Lyon, France (1991). [Google Scholar]
  6. J. Cortes, A. Debussche and I. Toumi, A density perturbation method to study the eigenstructure of two-phase flow equation systems, J. Comput. Phys. 147 (1998) 463–484. [Google Scholar]
  7. S. Evje and K.K. Fjelde, Hybrid flux-splitting schemes for a two-phase flow model. J. Comput. Phys. 175 (2002) 674–201. [CrossRef] [Google Scholar]
  8. S. Evje and K.K. Fjelde, On a rough AUSM scheme for a one-dimensional two-phase model. Comput. Fluids 32 (2003) 1497–1530. [CrossRef] [MathSciNet] [Google Scholar]
  9. S. Evje and T. Flåtten, Hybrid flux-splitting schemes for a common two-fluid model. J. Comput. Phys. 192 (2003) 175–210. [CrossRef] [Google Scholar]
  10. I. Faille and E. Heintzé, A rough finite volume scheme for modeling two-phase flow in a pipeline. Comput. Fluids 28 (1999) 213–241. [Google Scholar]
  11. K.K. Fjelde and K.H. Karlsen, High-resolution hybrid primitive-conservative upwind schemes for the drift-flux model. Comput. Fluids 31 (2002) 335–367. [CrossRef] [Google Scholar]
  12. F. França and R.T. Lahey, Jr., The use of drift-flux techniques for the analysis of horizontal two-phase flows. Int. J. Multiphas. Flow 18 (1992) 787–801. [Google Scholar]
  13. A. Harten, High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49 (1983) 357–393. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  14. S. Jin and Z.P. Xin, The relaxation schemes for systems of conservation laws in arbitrary space dimensions. Commun. Pur. Appl. Math. 48 (1995) 235–276. [Google Scholar]
  15. S. Karni, E. Kirr, A. Kurganov and G. Petrova, Compressible two-phase flows by central and upwind schemes. ESAIM: M2AN 38 (2004) 477–493. [CrossRef] [EDP Sciences] [Google Scholar]
  16. R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, Cambridge, UK (2002). [Google Scholar]
  17. J.M. Masella, Q.H. Tran, D. Ferre and C. Pauchon, Transient simulation of two-phase flows in pipes. Int. J. Multiphas. Flow 24 (1998) 739–755. [Google Scholar]
  18. S.T. Munkejord, S. Evje and T. Flåtten, The multi-stage centred-scheme approach applied to a drift-flux two-phase flow model. Int. J. Numer. Meth. Fl. 52 (2006) 679–705. [CrossRef] [Google Scholar]
  19. A. Murrone and H. Guillard, A five equation reduced model for compressible two phase flow problems. J. Comput. Phys. 202 (2005) 664–698. [Google Scholar]
  20. S. Osher, Riemann solvers, the entropy condition, and difference approximations. SIAM J. Numer. Anal. 21 (1984) 217–235. [Google Scholar]
  21. V.H. Ransom and D.L. Hicks, Hyperbolic two-pressure models for two-phase flow. J. Comput. Phys. 53 (1984) 124–151. [CrossRef] [MathSciNet] [Google Scholar]
  22. P.L. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43 (1981) 357–372. [Google Scholar]
  23. J.E. Romate, An approximate Riemann solver for a two-phase flow model with numerically given slip relation. Comput. Fluids 27 (1998) 455–477. [CrossRef] [MathSciNet] [Google Scholar]
  24. L. Sainsaulieu, Finite volume approximation of two-phase fluid flow based on an approximate Roe-type Riemann solver. J. Comput. Phys. 121 (1995) 1–28. [CrossRef] [MathSciNet] [Google Scholar]
  25. R. Saurel and R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150 (1999) 425–467. [Google Scholar]
  26. H.B. Stewart and B. Wendroff, Review article; Two-phase flow: models and methods. J. Comput. Phys. 56 (1984) 363–409. [Google Scholar]
  27. V.A. Titarev and E.F. Toro, MUSTA schemes for multi-dimensional hyperbolic systems: analysis and improvements. Int. J. Numer. Meth. Fl. 49 (2005) 117–147. [CrossRef] [Google Scholar]
  28. E.F. Toro, Riemann solvers and numerical methods for fluid dynamics, 2nd edn. Springer-Verlag, Berlin (1999). [Google Scholar]
  29. I. Toumi, An upwind numerical method for two-fluid two-phase flow models. Nucl. Sci. Eng. 123 (1996) 147–168. [Google Scholar]
  30. I. Toumi and D. Caruge, An implicit second-order numerical method for three-dimensional two-phase flow calculations. Nucl. Sci. Eng. 130 (1998) 213–225. [Google Scholar]
  31. I. Toumi and A. Kumbaro, An approximate linearized Riemann solver for a two-fluid model. J. Comput. Phys. 124 (1996) 286–300. [CrossRef] [MathSciNet] [Google Scholar]
  32. B. van Leer, Towards the ultimate conservative difference scheme IV. New approach to numerical convection. J. Comput. Phys. 23 (1977) 276–299. [Google Scholar]
  33. N. Zuber and J.A. Findlay, Average volumetric concentration in two-phase flow systems. J. Heat Transfer 87 (1965) 453–468. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you