Free Access
Volume 40, Number 5, September-October 2006
Page(s) 843 - 869
Published online 16 January 2007
  1. D.N. Arnold, F. Brezzi and J. Douglas, PEERS: A new mixed finite element method for plane elasticity. Japan J. Appl. Math. 1 (1984) 347–367. [CrossRef] [MathSciNet] [Google Scholar]
  2. D. Braess, O. Klaas, R. Niekamp, E. Stein and F. Wobschal, Error indicators for mixed finite elements in 2-dimensional linear elasticity. Comput. Method. Appl. M. 127 (1995) 345–356. [CrossRef] [MathSciNet] [Google Scholar]
  3. F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag (1991). [Google Scholar]
  4. C. Carstensen, A posteriori error estimate for the mixed finite element method. Math. Comput. 66 (1997) 465–476. [CrossRef] [MathSciNet] [Google Scholar]
  5. C. Carstensen and G. Dolzmann, A posteriori error estimates for mixed FEM in elasticity. Numer. Math. 81 (1998) 187–209. [CrossRef] [MathSciNet] [Google Scholar]
  6. P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, New York, Oxford (1978). [Google Scholar]
  7. P. Clément, Approximation by finite element functions using local regularisation. RAIRO Anal. Numér. 9 (1975) 77–84. [Google Scholar]
  8. J. Douglas and J. Wan, An absolutely stabilized finite element method for the Stokes problem. Math. Comput. 52 (1989) 495–508. [Google Scholar]
  9. G.N. Gatica, A note on the efficiency of residual-based a posteriori error estimators for some mixed finite element methods. Electronic Trans. Numer. Anal. 17 (2004) 218–233. [Google Scholar]
  10. G.N. Gatica, Analysis of a new augmented mixed finite element method for linear elasticity allowing Formula approximations. ESAIM: M2AN 40 (2006) 1–28. [CrossRef] [EDP Sciences] [Google Scholar]
  11. A. Masud and T.J.R. Hughes, A stabilized mixed finite element method for Darcy flow. Comput. Method. Appl. M. 191 (2002) 4341–4370. [Google Scholar]
  12. J.E. Roberts and J.-M. Thomas, Mixed and Hybrid Methods, in Handbook of Numerical Analysis II, Finite Element Methods (Part 1) P.G. Ciarlet and J.L. Lions Eds., North-Holland, Amsterdam (1991). [Google Scholar]
  13. R. Verfürth, A posteriori error estimation and adaptive mesh-refinement techniques. J. Comput. Appl. Math. 50 (1994) 67–83. [CrossRef] [MathSciNet] [Google Scholar]
  14. R. Verfürth, A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley-Teubner (Chichester) (1996). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you