Free Access
Volume 40, Number 5, September-October 2006
Page(s) 897 - 921
Published online 16 January 2007
  1. M. Amara, D. Capatina-Papaghiuc, E. Chacón-Vera and D. Trujillo, Vorticity-velocity-pressure formulation for Navier-Stokes equations. Comput. Vis. Sci. 6 (2004) 47–52. [CrossRef] [MathSciNet] [Google Scholar]
  2. C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional nonsmooth domains. Math. Method. Appl. Sci. 21 (1998) 823–864. [Google Scholar]
  3. F. Ben Belgacem and C. Bernardi, Spectral element discretization of the Maxwell equations. Math. Comput. 68 (1999) 1497–1520. [CrossRef] [Google Scholar]
  4. C. Bernardi and N. Chorfi, Spectral discretization of the vorticity, velocity and pressure formulation of the Stokes problem. SIAM J. Numer. Anal. 44 (2006) 826–850. bibitemBMx C. Bernardi and Y. Maday, Spectral Methods, in the Handbook of Numerical Analysis V, P.G. Ciarlet and J.-L. Lions Eds., North-Holland (1997) 209–485. [Google Scholar]
  5. C. Bernardi, M. Dauge and Y. Maday, Polynomials in the Sobolev world. Internal Report, Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie (2003). [Google Scholar]
  6. C. Bernardi, V. Girault and P.-A. Raviart, Incompressible Viscous Fluids and their Finite Element Discretizations, in preparation. [Google Scholar]
  7. J. Boland and R. Nicolaides, Stability of finite elements under divergence constraints. SIAM J. Numer. Anal. 20 (1983) 722–731. [CrossRef] [MathSciNet] [Google Scholar]
  8. A. Buffa and P. Ciarlet, Jr., On traces for functional spaces related to Maxwell's equations. Part II: Hodge decompositions on the boundary of Lipschitz polyhedra and applications. Math. Method. Appl. Sci. 24 (2001) 31–48. [Google Scholar]
  9. A. Buffa, M. Costabel and M. Dauge, Algebraic convergence for anisotropic edge elements in polyhedral domains. Numer. Math. 101 (2005) 29–65. [CrossRef] [MathSciNet] [Google Scholar]
  10. M. Costabel and M. Dauge, Espaces fonctionnels Maxwell: Les gentils, les méchants et les singularités, Web publication (1998) [Google Scholar]
  11. M. Costabel and M. Dauge, Computation of resonance frequencies for Maxwell equations in non smooth domains, in Topics in Computational Wave Propagation, M. Ainsworth, P. Davies, D. Duncan, P. Martin and B. Rynne Eds., Springer (2004) 125–161. [Google Scholar]
  12. F. Dubois, Vorticity-velocity-pressure formulation for the Stokes problem. Math. Meth. Appl. Sci. 25 (2002) 1091–1119. [CrossRef] [Google Scholar]
  13. F. Dubois, M. Salaün and S. Salmon, Vorticity-velocity-pressure and stream function-vorticity formulations for the Stokes problem. J. Math. Pure. Appl. 82 (2003) 1395–1451. [CrossRef] [MathSciNet] [Google Scholar]
  14. V. Girault and P.-A. Raviart, Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer-Verlag (1986). [Google Scholar]
  15. J.-C. Nédélec, Mixed finite elements in Formula . Numer. Math. 35 (1980) 315–341. [CrossRef] [MathSciNet] [Google Scholar]
  16. P.-A. Raviart and J.-M. Thomas, A mixed finite element method for second order elliptic problems, in Mathematical Aspects of Finite Element Methods, I. Galligani and E. Magenes Eds., Lect. Notes Math. 606, Springer-Verlag (1977) 292–315. [Google Scholar]
  17. S. Salmon, Développement numérique de la formulation tourbillon-vitesse-pression pour le problème de Stokes. Ph.D. thesis, Université Pierre et Marie Curie, Paris (1999). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you