Free Access
Issue |
ESAIM: M2AN
Volume 41, Number 1, January-February 2007
|
|
---|---|---|
Page(s) | 21 - 54 | |
DOI | https://doi.org/10.1051/m2an:2007006 | |
Published online | 26 April 2007 |
- R.A. Adams, Sobolev spaces. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, Pure and Applied Mathematics, Vol. 65 (1975). [Google Scholar]
- P.F. Antonietti, A. Buffa and I. Perugia, Discontinuous Galerkin approximation of the Laplace eigenproblem. Comput. Methods Appl. Mech. Engrg. 195 (2006) 3483–3503. [Google Scholar]
- D.N. Arnold, An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742–760. [CrossRef] [MathSciNet] [Google Scholar]
- D.N. Arnold, F. Brezzi, B. Cockburn and L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2001/02) 1749–1779 (electronic). [Google Scholar]
- I. Babuška and M. Zlámal, Nonconforming elements in the finite element method with penalty. SIAM J. Numer. Anal. 10 (1973) 863–875. [CrossRef] [MathSciNet] [Google Scholar]
- F. Bassi and S. Rebay, A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations. J. Comput. Phys. 131 (1997) 267–279. [CrossRef] [MathSciNet] [Google Scholar]
- F. Bassi, S. Rebay, G. Mariotti, S. Pedinotti and M. Savini, A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows, in Proceedings of the 2nd European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, R. Decuypere and G. Dibelius Eds., Antwerpen, Belgium (1997) 99–108, Technologisch Instituut. [Google Scholar]
- C.E. Baumann and J.T. Oden, A discontinuous hp finite element method for convection-diffusion problems. Comput. Methods Appl. Mech. Engrg. 175 (1999) 311–341. [CrossRef] [MathSciNet] [Google Scholar]
- S.C. Brenner, Poincaré-Friedrichs inequalities for piecewise H1 functions. SIAM J. Numer. Anal. 41 (2003) 306–324 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
- S.C. Brenner and K. Wang, Two-level additive Schwarz preconditioners for C0 interior penalty methods. Numer. Math. 102 (2005) 231–255. [CrossRef] [MathSciNet] [Google Scholar]
- F. Brezzi, G. Manzini, D. Marini, P. Pietra and A. Russo, Discontinuous Galerkin approximations for elliptic problems. Numer. Methods Partial Differ. Equ. 16 (2000) 365–378. [CrossRef] [MathSciNet] [Google Scholar]
- F. Brezzi, L.D. Marini and E. Süli, Discontinuous Galerkin methods for first-order hyperbolic problems. Math. Models Methods Appl. Sci. 14 (2004) 1893–1903. [Google Scholar]
- X.-C. Cai and O.B. Widlund, Domain decomposition algorithms for indefinite elliptic problems. SIAM J. Sci. Statist. Comput. 13 (1992) 243–258. [CrossRef] [MathSciNet] [Google Scholar]
- P.E. Castillo, Local Discontinuous Galerkin methods for convection-diffusion and elliptic problems. Ph.D. thesis, University of Minnesota, Minneapolis (2001). [Google Scholar]
- P. Castillo, B. Cockburn, I. Perugia and D. Schötzau, An a priori error analysis of the local discontinuous Galerkin method for elliptic problems. SIAM J. Numer. Anal. 38 (2000) 1676–1706 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
- P.G. Ciarlet, The finite element method for elliptic problems. North-Holland Publishing Co., Amsterdam, Studies in Mathematics and its Applications, Vol. 4 (1978). [Google Scholar]
- B. Cockburn, Discontinuous Galerkin methods for convection-dominated problems, in High-order methods for computational physics, Springer, Berlin, Lect. Notes Comput. Sci. Eng. 9 (1999) 69–224. [Google Scholar]
- B. Cockburn and C.-W. Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J. Numer. Anal. 35 (1998) 2440–2463 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
- B. Cockburn, G.E. Karniadakis, and C.-W. Shu. The development of discontinuous Galerkin methods, in Discontinuous Galerkin methods (Newport, RI, 1999), Springer, Berlin, Lect. Notes Comput. Sci. Eng. 11 (2000) 3–50. [Google Scholar]
- C. Dawson, S. Sun and M.F. Wheeler, Compatible algorithms for coupled flow and transport. Comput. Methods Appl. Mech. Engrg. 193 (2004) 2565–2580. [Google Scholar]
- J. Douglas, Jr., and T. Dupont. Interior penalty procedures for elliptic and parabolic Galerkin methods, in Computing methods in applied sciences (Second Internat. Sympos., Versailles, 1975), Springer, Berlin, Lect. Notes Phys. 58 (1976) 207–216. [Google Scholar]
- S.C. Eisenstat, H.C. Elman and M.H. Schultz, Variational iterative methods for nonsymmetric systems of linear equations. SIAM J. Numer. Anal. 20 (1983) 345–357. [CrossRef] [MathSciNet] [Google Scholar]
- X. Feng and O.A. Karakashian, Two-level additive Schwarz methods for a discontinuous Galerkin approximation of second order elliptic problems. SIAM J. Numer. Anal. 39 (2001) 1343–1365 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
- X. Feng and O.A. Karakashian, Analysis of two-level overlapping additive Schwarz preconditioners for a discontinuous Galerkin method. In Domain decomposition methods in science and engineering (Lyon, 2000), Theory Eng. Appl. Comput. Methods, Internat. Center Numer. Methods Eng. (CIMNE), Barcelona (2002) 237–245. [Google Scholar]
- G.H. Golub and C.F. Van Loan, Matrix computations. Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, third edition (1996). [Google Scholar]
- J. Gopalakrishnan and G. Kanschat. Application of unified DG analysis to preconditioning DG methods, in Computational Fluid and Solid Mechanics 2003, K.J. Bathe Ed., Elsevier (2003) 1943–1945. [Google Scholar]
- J. Gopalakrishnan and G. Kanschat, A multilevel discontinuous Galerkin method. Numer. Math. 95 (2003) 527–550. [CrossRef] [MathSciNet] [Google Scholar]
- B. Heinrich and K. Pietsch, Nitsche type mortaring for some elliptic problem with corner singularities. Computing 68 (2002) 217–238. [CrossRef] [MathSciNet] [Google Scholar]
- P. Houston and E. Süli, hp-adaptive discontinuous Galerkin finite element methods for first-order hyperbolic problems. SIAM J. Sci. Comput. 23 (2001) 1226–1252 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
- C. Lasser and A. Toselli, An overlapping domain decomposition preconditioner for a class of discontinuous Galerkin approximations of advection-diffusion problems. Math. Comp. 72 (2003) 1215–1238 (electronic). [Google Scholar]
- P. Le Tallec, Domain decomposition methods in computational mechanics. Comput. Mech. Adv. 1 (1994) 121–220. [Google Scholar]
- P.-L. Lions, On the Schwarz alternating method. I, in First International Symposium on Domain Decomposition Methods for Partial Differential Equations (Paris, 1987), SIAM, Philadelphia, PA (1988) 1–42. [Google Scholar]
- P.-L. Lions, On the Schwarz alternating method. II. Stochastic interpretation and order properties, in Domain decomposition methods (Los Angeles, CA, 1988), SIAM, Philadelphia, PA (1989) 47–70. [Google Scholar]
- P.-L. Lions, On the Schwarz alternating method. III. A variant for nonoverlapping subdomains, in Third International Symposium on Domain Decomposition Methods for Partial Differential Equations (Houston, TX, 1989), SIAM, Philadelphia, PA (1990) 202–223. [Google Scholar]
- W.H. Reed and T. Hill, Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973). [Google Scholar]
- B. Rivière, M.F. Wheeler and V. Girault, Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. I. Comput. Geosci. 3 (1999) 337–360. [CrossRef] [Google Scholar]
- B. Rivière, M.F. Wheeler and V. Girault, A priori error estimates for finite element methods based on discontinuous approximation spaces for elliptic problems. SIAM J. Numer. Anal. 39 (2001) 902–931 (electronic). [CrossRef] [MathSciNet] [Google Scholar]
- Y. Saad and M.H. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 7 (1986) 856–869. [Google Scholar]
- M. Sarkis and D.B. Szyld, Optimal left and right additive Schwarz preconditioning for Minimal Residual methods with euclidean and energy norms. Comput. Methods Appl. Mech. Engrg. 196 (2007) 1612–1621. [CrossRef] [MathSciNet] [Google Scholar]
- B.F. Smith, P.E. Bjørstad and W.D. Gropp, Domain decomposition. Cambridge University Press, Cambridge, Parallel multilevel methods for elliptic partial differential equations (1996). [Google Scholar]
- G. Starke, Field-of-values analysis of preconditioned iterative methods for nonsymmetric elliptic problems. Numer. Math. 78 (1997) 103–117. [CrossRef] [MathSciNet] [Google Scholar]
- R. Stenberg, Mortaring by a method of J. A. Nitsche, in Computational mechanics (Buenos Aires, 1998), pages CD–ROM file. Centro Internac. Métodos Numér. Ing., Barcelona (1998). [Google Scholar]
- A. Toselli and O. Widlund, Domain decomposition methods–algorithms and theory, Springer Series in Computational Mathematics 34, Springer-Verlag, Berlin (2005). [Google Scholar]
- M.F. Wheeler, An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15 (1978) 152–161. [CrossRef] [MathSciNet] [Google Scholar]
- J.H. Wilkinson, The algebraic eigenvalue problem. Monographs on Numerical Analysis, The Clarendon Press Oxford University Press, New York (1988), Oxford Science Publications. [Google Scholar]
- J. Xu, Iterative methods by space decomposition and subspace correction. SIAM Rev. 34 (1992) 581–613. [CrossRef] [MathSciNet] [Google Scholar]
- J. Xu and L. Zikatanov, The method of alternating projections and the method of subspace corrections in Hilbert space. J. Amer. Math. Soc. 15 (2002) 573–597 (electronic). [CrossRef] [Google Scholar]
- J. Xu and J. Zou. Some nonoverlapping domain decomposition methods. SIAM Rev. 40 (1998) 857–914 (electronic). [Google Scholar]
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.