Free Access
Issue
ESAIM: M2AN
Volume 41, Number 1, January-February 2007
Page(s) 55 - 76
DOI https://doi.org/10.1051/m2an:2007007
Published online 26 April 2007
  1. I. Babuška, The finite element method with penalty. Math. Comp. 27 (1973) 221–228. [CrossRef] [MathSciNet] [Google Scholar]
  2. I. Babuška and M. Zlámal, Nonconforming elements in the finite element method with penalty. SIAM J. Numer. Anal. 10 (1973) 863–875. [CrossRef] [MathSciNet] [Google Scholar]
  3. G.A. Baker, Finite element methods for elliptic equations using nonconforming elements. Math. Comp. 31 (1977) 45–59. [CrossRef] [MathSciNet] [Google Scholar]
  4. A. Bonito and E. Burman, A face penalty method for the three fields Stokes equation arising from Oldroyd-B viscoelastic flows, in Numerical Mathematics and Advanced Applications, ENUMATH Conf. Proc., Springer (2006). [Google Scholar]
  5. E. Burman, A unified analysis for conforming and nonconforming stabilized finite element methods using interior penalty. SIAM J. Numer. Anal. 43 (2005) 2012–2033. [CrossRef] [Google Scholar]
  6. E. Burman and P. Hansbo, Edge stabilization for Galerkin approximations of convection-diffusion-reaction problems. Comput. Methods Appl. Mech. Engrg. 193 (2004) 1437–1453. [CrossRef] [MathSciNet] [Google Scholar]
  7. E. Burman and P. Hansbo, Edge stabilization for the generalized Stokes problem: a continuous interior penalty method. Comput. Methods Appl. Mech. Engrg. 195 (2006) 2393–2410. [CrossRef] [MathSciNet] [Google Scholar]
  8. E. Burman and B. Stamm, Discontinuous and continuous finite element methods with interior penalty for hyperbolic problems. J. Numer. Math (2005) Submitted (EPFL-IACS report 17.2005). [Google Scholar]
  9. Z. Cai, T.A. Manteuffel, S.F. McCormick and S.V. Parter. First-order system least squares (FOSLS) for planar linear elasticity: Pure traction problem. SIAM J. Numer. Anal. 35 (1998) 320–335. [CrossRef] [Google Scholar]
  10. J. Douglas, Jr., and T. Dupont, Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods. Lect. Notes Phys. 58, Springer-Verlag, Berlin (1976). [Google Scholar]
  11. L. El Alaoui and A. Ern, Residual and hierarchical a posteriori estimates for nonconforming mixed finite element methods. ESAIM: M2AN 38 (2004) 903–929. [CrossRef] [EDP Sciences] [Google Scholar]
  12. A. Ern and J.-L. Guermond, Theory and Practice of Finite Elements. Appl. Math. Sci. 159, Springer-Verlag, New York, NY (2004). [Google Scholar]
  13. A. Ern and J.-L. Guermond, Discontinuous Galerkin methods for Friedrichs' systems. I. General theory. SIAM J. Numer. Anal. 44 (2006) 753–778. [CrossRef] [MathSciNet] [Google Scholar]
  14. A. Ern and J.-L. Guermond, Discontinuous Galerkin methods for Friedrichs' systems. II. Second-order PDEs. SIAM J. Numer. Anal. 44 (2006) 2363–2388. [CrossRef] [Google Scholar]
  15. A. Ern and J.-L. Guermond, Discontinuous Galerkin methods for Friedrichs' systems. III. Multi-field theories with partial coercivity. SIAM J. Numer. Anal. (2006) Submitted (CERMICS report 2006–320). [Google Scholar]
  16. A. Ern and J.-L. Guermond, Evaluation of the condition number in linear systems arising in finite element approximations. ESAIM: M2AN 40 (2006) 29–48. [CrossRef] [EDP Sciences] [Google Scholar]
  17. R.S. Falk and G.R. Richter, Explicit finite element methods for symmetric hyperbolic equations. SIAM J. Numer. Anal. 36 (1999) 935–952. [CrossRef] [Google Scholar]
  18. K.O. Friedrichs, Symmetric positive linear differential equations. Comm. Pure Appl. Math. 11 (1958) 333–418. [CrossRef] [MathSciNet] [Google Scholar]
  19. F. Hecht and O. Pironneau, FreeFEM++ Manual. Laboratoire Jacques-Louis Lions, University Paris VI (2005). [Google Scholar]
  20. R.H.W. Hoppe and B. Wohlmuth, Element-oriented and edge-oriented local error estimators for non-conforming finite element methods. RAIRO Math. Model. Anal. Numer. 30 (1996) 237–263. [Google Scholar]
  21. M. Jensen, Discontinuous Galerkin Methods for Friedrichs Systems with Irregular Solutions. Ph.D. thesis, University of Oxford (2004). [Google Scholar]
  22. C. Johnson and J. Pitkäranta, An analysis of the discontinuous Galerkin method for a scalar hyperbolic equation. Math. Comp. 46 (1986) 1–26. [CrossRef] [MathSciNet] [Google Scholar]
  23. O. Karakashian and F. Pascal, A-posteriori error estimates for a discontinuous Galerkin approximation of second order elliptic problems. SIAM J. Numer. Anal. 41 (2003) 2374–2399. [CrossRef] [MathSciNet] [Google Scholar]
  24. P. Lesaint, Finite element methods for symmetric hyperbolic equations. Numer. Math. 21 (1973/74) 244–255. [Google Scholar]
  25. P. Lesaint, Sur la résolution des systèmes hyperboliques du premier ordre par des méthodes d'éléments finis. Ph.D. thesis, University of Paris VI, France (1975). [Google Scholar]
  26. P. Lesaint and P.-A. Raviart. On a finite element method for solving the neutron transport equation, in Mathematical Aspects of Finite Elements in Partial Differential Equations, C. de Boors Ed., Academic Press (1974) 89–123. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you