Free Access
Volume 41, Number 1, January-February 2007
Page(s) 95 - 110
Published online 26 April 2007
  1. R. Beals, P. Deift and C. Tomei, Direct and inverse scattering on the line. Mathematical Surveys and Monographs 28, American Mathematical Society, Providence, RI (1988). [Google Scholar]
  2. J.L. Bona and Z. Grujić, Spatial analyticity for nonlinear waves. Math. Models Methods Appl. Sci. 13 (2003) 1–15. [CrossRef] [MathSciNet] [Google Scholar]
  3. J.L. Bona, Z. Grujić and H. Kalisch, Algebraic lower bounds for the uniform radius of spatial analyticity for the generalized KdV equation. Ann. Inst. H. Poincaré, Anal. Non Linéaire 22 (2005) 783–797. [Google Scholar]
  4. J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations. GAFA 3 (1993) 107–156, 209–262. [Google Scholar]
  5. J. Boussinesq, Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl. 17 (1872) 55–108. [Google Scholar]
  6. C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods in Fluid Dynamics. Springer, Berlin (1988). [Google Scholar]
  7. J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao, Multilinear estimates for periodic KdV equations, and applications. J. Funct. Anal. 211 (2004) 173–218. [CrossRef] [MathSciNet] [Google Scholar]
  8. J.M. Cooley and J.W. Tukey, An algorithm for the machine calculation of complex Fourier series. Math. Comp. 19 (1965) 297–301. [CrossRef] [MathSciNet] [Google Scholar]
  9. A. Doelman and E.S. Titi, Regularity of solutions and the convergence of the Galerkin method in the Ginzburg-Landau equation. Numer. Funct. Anal. Optim. 14 (1993) 299–321. [CrossRef] [MathSciNet] [Google Scholar]
  10. P.G. Drazin and R.S. Johnson, Solitons: an introduction, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (1989). [Google Scholar]
  11. A.B. Ferrari and E.S. Titi, Gevrey regularity for nonlinear analytic parabolic equations. Comm. Partial Differential Equations 23 (1998) 1–16. [MathSciNet] [Google Scholar]
  12. C. Foias and R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equations. J. Functional Anal. 87 (1989) 359–369. [CrossRef] [Google Scholar]
  13. Z. Grujić and H. Kalisch, Local well-posedness of the generalized Korteweg-de Vries equation in spaces of analytic functions. Diff. Integral Eq. 15 (2002) 1325–1334. [Google Scholar]
  14. N. Hayashi, Analyticity of solutions of the Korteweg-de Vries equation. SIAM J. Math. Anal. 22 (1991) 1738–1743. [CrossRef] [MathSciNet] [Google Scholar]
  15. N. Hayashi, Solutions of the (generalized) Korteweg-de Vries equation in the Bergman and Szegö spaces on a sector. Duke Math. J. 62 (1991) 575–591. [CrossRef] [MathSciNet] [Google Scholar]
  16. H. Kalisch, Rapid convergence of a Galerkin projection of the KdV equation. C. R. Math. 341 (2005) 457–460. [Google Scholar]
  17. T. Kappeler and P. Topalov, Global well-posedness of KdV in Formula . Duke Math. J. 7 135 (2006) 327–360. [Google Scholar]
  18. T. Kato and K. Masuda, Nonlinear evolution equations and analyticity I. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 3 (1986) 455–467. [Google Scholar]
  19. C.E Kenig, G. Ponce and L. Vega, A bilinear estimate with applications to the KdV equation. J. Amer. Math. Soc. 9 (1996) 573–603. [CrossRef] [MathSciNet] [Google Scholar]
  20. D.J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular channel and on a new type of long stationary wave. Philos. Mag. 39 (1895) 422–443. [Google Scholar]
  21. H.-O. Kreiss and J. Oliger, Stability of the Fourier method. SIAM J. Numer. Anal. 16 (1979) 421–433. [CrossRef] [MathSciNet] [Google Scholar]
  22. C.D. Levermore and M. Oliver, Analyticity of solutions for a generalized Euler equation. J. Differential Equations 133 (1997) 321–339. [CrossRef] [MathSciNet] [Google Scholar]
  23. Y. Maday and A. Quarteroni, Error analysis for spectral approximation of the Korteweg-de Vries equation. RAIRO Modél. Math. Anal. Numér. 22 (1988) 499–529. [MathSciNet] [Google Scholar]
  24. J.E. Pasciak, Spectral and pseudospectral methods for advection equations. Math. Comput. 35 (1980) 1081–1092. [Google Scholar]
  25. E. Tadmor, The exponential accuracy of Fourier and Chebyshev differencing methods. SIAM J. Numer. Anal. 23 (1986) 1–10. [CrossRef] [MathSciNet] [Google Scholar]
  26. T. Taha and M. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations. III. Numerical, Korteweg-de Vries equation. J. Comput. Phys. 55 (1984) 231–253. [CrossRef] [MathSciNet] [Google Scholar]
  27. R. Temam, Sur un problème non linéaire. J. Math. Pures Appl. 48 (1969) 159–172. [MathSciNet] [Google Scholar]
  28. G.B. Whitham, Linear and Nonlinear Waves. Wiley, New York (1974). [Google Scholar]
  29. N.J. Zabusky and M.D. Kruskal, Interaction of solutions in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15 (1965) 240–243. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.

Recommended for you